Cho các số dương x,y thỏa mãn \(x^2+y^2+\frac{1}{xy}=3\) Tìm giá trị lớn nhất của biểu thức:
P=\(2(\frac{1}{1+x^2}+\frac{1}{1+y^2})-\frac{3}{1+2xy}\)
Lời giải:
Áp dụng BĐT AM-GM:
\(3=x^2+y^2+\frac{1}{xy}\geq 2xy+\frac{1}{xy}\)
Đặt \(xy=t\Rightarrow 3\geq 2t+\frac{1}{t}\)
\(\Leftrightarrow 3t\geq 2t^2+1\Leftrightarrow 2t^2-3t+1\leq 0\)
\(\Leftrightarrow (2t-1)(t-1)\leq 0\Rightarrow \frac{1}{2}\leq t\leq 1\)
Với \(t=xy\leq 1\) ta có bổ đề sau:
\(\frac{1}{x^2+1}+\frac{1}{y^2+1}\leq \frac{2}{xy+1}(*)\)
Việc chứng minh bổ đề trên rất đơn giản. Thực hiện biến đổi tương đương và rút gọn ta thu được:
\((*)\Leftrightarrow (xy-1)(x-y)^2\leq 0\) (luôn đúng do \(xy\leq 1\) )
Áp dụng bổ đề trên vào bài toán đã cho:
\(P=2\left(\frac{1}{x^2+1}+\frac{1}{y^2+1}\right)-\frac{3}{2xy+1}\leq \frac{4}{xy+1}-\frac{3}{2xy+1}\)
\(\Leftrightarrow P\leq \frac{4}{t+1}-\frac{3}{2t+1}\)
Ta sẽ chứng minh \(\frac{4}{t+1}-\frac{3}{2t+1}\leq \frac{7}{6}\)
\(\Leftrightarrow \frac{5t+1}{2t^2+3t+1}\leq \frac{7}{6}\)
\(\Leftrightarrow 30t+6\leq 14t^2+21t+7\)
\(\Leftrightarrow 14t^2-9t+1\geq 0\)
\(\Leftrightarrow (2t-1)(7t-1)\geq 0\)
BĐT trên luôn đúng do \(t\geq \frac{1}{2}\)
Như vậy: \(P\leq \frac{4}{t+1}-\frac{3}{2t+1}\leq \frac{7}{6}\)
Vậy \(P_{\max}=\frac{7}{6}\). Dấu bằng xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)