cho pt: =0 (với m là tham số).Tìm m để phương trình có hai nghiệm thỏa mãn m()+=9
Em đang cần gấp tại hơi nâng cao!
cho pt: \(x^2+2x+m-3\)=0 (với m là tham số).Tìm m để phương trình có hai nghiệm \(x_1x_2\) thỏa mãn m(\(x_1^3+x_2^3\))+\(x_1^2x_2^2\)=9
Em đang cần gấp tại hơi nâng cao!
Δ=2^2-4(m-3)
=4-4m+12=16-4m
Để phương trình có hai nghiệm thì 16-4m>=0
=>m<=4
m(x1^3+x2^3)+(x1*x2)^2=9
=>m[(x1+x2)^3-3x1x2(x1+x2)]+(m-3)^2=9
=>m[(-2)^3-3(m-3)*(-2)]+(m-3)^2=9
=>m[-8+6(m-3)]+(m-3)^2=9
=>m^2-6m+9-9+m[-8+6m-18]=0
=>m^2-6m+m[6m-26]=0
=>m^2-6m+6m^2-26m=0
=>7m^2-32m=0
=>m=0(nhận) hoặc m=32/7(loại)
△ = 4-4m+12 = 16-4m
ptr có 2 ngh \(x_1;x_2\) ⇔△≥0 ⇔m≤4
Theo viet: \(x_1+x_2=-2;x_1x_2=m-3\)
Ta có\(m\left(x_1^3+x_2^3\right)+x_1^2x_2^2=9\\ \Leftrightarrow m\left(x_1+x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)+x_1^2x_2^2=9\\ \Leftrightarrow m\left(-2\right)\left(x_1+x_2\right)^2-3x_1x_2m\left(-2\right)+\left(x_1x_2\right)^2=9\\ \Leftrightarrow-8m+6m\left(m-3\right)+\left(m-3\right)^2=9\\ \Leftrightarrow6m^2-18m-8m+m^2-6m+9=9\Leftrightarrow7m^2-32m=0\\ \)
⇔m=0(tm) hoặc m=32/7 (loại)
kl....
cho pt: \(x^2+2x+m-3\)=0 (với m là tham số).Tìm m để phương trình có hai nghiệm phân biệt \(x_1x_2\) thỏa mãn m(\(x_1^3+x_2^3\))+\(x_1^2x_2^2\)=9
Em đang cần gấp tại hơi nâng cao!
Δ=2^2-4(m-3)
=4-4m+12=16-4m
Để phương trình có hai nghiệm phân biệt thì 16-4m>0
=>m<4
m(x1^3+x2^3)+(x1*x2)^2=9
=>m[(x1+x2)^3-3x1x2(x1+x2)]+(m-3)^2=9
=>m[(-2)^3-3(m-3)*(-2)]+(m-3)^2=9
=>m[-8+6(m-3)]+(m-3)^2=9
=>m^2-6m+9-9+m[-8+6m-18]=0
=>m^2-6m+m[6m-26]=0
=>m^2-6m+6m^2-26m=0
=>7m^2-32m=0
=>m=0(nhận) hoặc m=32/7(loại)
Cho phương trình x2 – 2x + m – 1 = 0 (1) (m là tham số)
a) Giải phương trình khi m = 1.
b) Tìm m nguyên dương để phương trình có hai nghiệm x1, x2 thỏa mãn x31 + x32\(\le\) 15
a: Khi m=1 thì phương trình sẽ là:
\(x^2-2x+1-1=0\)
=>x^2-2x=0
=>x(x-2)=0
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2\right)^2-4\left(m-1\right)=4-4m+4=-4m+8\)
Để phương trình có 2 nghiệm thì -4m+8>=0
=>-4m>=-8
=>m<=2
\(x_1^3+x_2^3< =15\)
=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)< =15\)
=>\(2^3-3\cdot2\cdot\left(m-1\right)< =15\)
=>\(8-6m+6< =15\)
=>-6m+14<=15
=>-6m<=1
=>\(m>=-\dfrac{1}{6}\)
=>\(-\dfrac{1}{6}< =m< =2\)
Cho phương trình x2 - 2x + m - 3 = 0, m là tham số. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn x12 + x1x2 = 2x2 -12
\(\Delta'=1-\left(m-3\right)=4-m>0\Rightarrow m< 4\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-3\end{matrix}\right.\)
Do \(x_1+x_2=2\Rightarrow x_2=2-x_1\)
Ta có:
\(x_1^2+x_1x_2=2x_2-12\)
\(\Leftrightarrow x_1\left(x_1+x_2\right)=2\left(2-x_1\right)-12\)
\(\Leftrightarrow2x_1=4-2x_1-12\)
\(\Leftrightarrow4x_1=-8\Rightarrow x_1=-2\Rightarrow x_2=4\)
Thế vào \(x_1x_2=m-3\Rightarrow m-3=-8\)
\(\Rightarrow m=-5\)
Cho phương trình: x2-2x+m-3=0, với m là tham số. Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn: x12 + x22 - x1x2 < 7.
Δ=(-2)^2-4(m-3)
=4-4m+12=-4m+16
Để pt có hai nghiệm thì -4m+16>=0
=>-4m>=-16
=>m<=4
x1^2+x2^2-x1x2<7
=>(x1+x2)^2-3x1x2<7
=>2^2-3(m-3)<7
=>4-3m+9<7
=>-3m+13<7
=>-3m<-6
=>m>2
=>2<m<=4
Cho phương trình x^2-2x+m=0(1)(m là tham số) a,giải phương trình (1) với m=-3 b,tìm m để phương trình 1 có 2 nghiệm x1x2 thoả mãn 1/x1^2 + 1/x2^2 =2
a: Thay m=-3 vào (1), ta được:
\(x^2-2x-3=0\)
=>(x-3)(x+1)=0
hay x∈{3;-1}
cho pt bậc 2 : ax^2+bx+c=0 có 2 nghiệm phân biệt thỏa mãn
X1+x2-2.X1x2=0
mx1x2-(x1+x2)=2m+1
a) tìm pt bậc hai trên với m là tham số
b)xác định m để phương trình bậc 2 trên có 2 nghiệm dương phân biệt
viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn
Cho phương trình x^2-(m+3)x+4m-4=0 với m là tham số.Tìm m để pt có 2 nghiệm thỏa mãn \(\sqrt{x1}+\sqrt{x2}+x1x2=20\)
Cho phương trình ẩn x: x2 – x + 1 + m = 0 (1)
a) Giải phương trình đã cho với m = 0.
b) Tìm các giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: x1x2.( x1x2 – 2 ) = 3( x1 + x2 ).
a, Thay m=0 vào pt ta có:
\(x^2-x+1=0\)
\(\Rightarrow\) pt vô nghiệm
b, Để pt có 2 nghiệm thì \(\Delta\ge0\)
\(\Leftrightarrow\left(-1\right)^2-4.1\left(m+1\right)\ge0\\ \Leftrightarrow1-4m-4\ge0\\ \Leftrightarrow-3-4m\ge0\\ \Leftrightarrow4m+3\le0\\ \Leftrightarrow m\le-\dfrac{3}{4}\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1x_2\left(x_1x_2-2\right)=3\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1x_2\right)^2-2x_1x_2=3.1\\ \Leftrightarrow\left(m+1\right)^2-2\left(m+1\right)-3=0\\ \Leftrightarrow\left[{}\begin{matrix}m+1=3\\m+1=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)