Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Đức Hà
Xem chi tiết
ILoveMath
21 tháng 12 2021 lúc 22:15

\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)

\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-xy-y^2+2y+y+x-2+2019\)

\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)

\(\Rightarrow M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)

\(\Rightarrow M=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)

\(\Rightarrow M=\left(x^2-y+1\right).0+2019\)

\(\Rightarrow M=0+2019\)

\(\Rightarrow M=2019\)

Ng Khang
24 tháng 2 2022 lúc 20:13

Chu Thành An
Xem chi tiết
Good boy
13 tháng 1 2022 lúc 16:13

M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017

M = (x3 + x2y - 2x2) - (xy + y2 - 2y) + (x + y - 2) + 2019

M = x2. (x + y - 2) - y(x + y - 2) + (x + y - 2) + 2019 = 2019

Lê Phương Mai
13 tháng 1 2022 lúc 16:17

\(M = x^3 + x^2y - 2x^2 - xy - y^2 + 3y + x + 2017.\)

\(M=(x^3+x^2y-2x^2)-(xy-y^2+2y)+(x+y-2)+2019\)

\(M=x^2.(x+y-2)-y.(x-y+2)+(x+y-2)+2019\)

\(M=x^2.0-y.0+0+2019\)

\(M=0-0+0+2019\)

\(M=2019\)

zero
13 tháng 1 2022 lúc 16:23

M=x3+x2y−2x2−xy−y2+3y+x+2017.

M=(x3+x2y−2x2)−(xy−y2+2y)+(x+y−2)+2019

M=x2.(x+y−2)−y.(x−y+2)+(x+y−2)+2019

M=x2.0−y.0+0+2019

Hoàng Minh Ngọc
Xem chi tiết
Nguyễn Hữu Việt
Xem chi tiết
Nguyễn Hữu Việt
22 tháng 5 2022 lúc 8:29

ko trả lời thì thôi đừng nhắn bậy

 

Nguyễn Anh Minh
22 tháng 5 2022 lúc 8:39

đúng ko trả lời cứ nhắn bậy

DINH LE DUC ANH
22 tháng 5 2022 lúc 9:54

 

M=(x3+x2y-2x2)+(2y-y2-xy)+(x+y-2)+2020

M=x2(x+y-2)+y(2-y-x)+(x+y-2)+2020

M=x2.0+y.0+0+2020

M=2020

Vậy M=2020

không hiểu chỗ nào hỏi mình nha!

Chung Tran
Xem chi tiết
Akai Haruma
13 tháng 8 2021 lúc 17:13

Bài 1:

Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$

Vậy gtnn của biểu thức là $\frac{5}{4}$

Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$

Akai Haruma
13 tháng 8 2021 lúc 17:15

Bài 2:

$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)

\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)

Nguyễn Điệp Hương
Xem chi tiết
Nguyễn Hữu Việt
Xem chi tiết
Đoàn Đức Hà
20 tháng 5 2022 lúc 1:20

\(A=x^3+x^2y-2x^2-xy-y^2+3y+x+2019\)

\(=x^3+x^2\left(2-x\right)-2x^2-y\left(x+y\right)+3y+x+2019\)

\(=x^3+2x^2-x^3-2x^2-2y+3y+x+2019\)

\(=x+y+2019=2021\)

Võ Quang Nhân
21 tháng 5 2022 lúc 20:19

1q

Akai Haruma
17 tháng 9 2023 lúc 17:52

Lời giải:

a. $=(x-y)(x+y)=[(-1)-(-3)][(-1)+(-3)]=2(-4)=-8$
b. $=3x^4-2xy^3+x^3y^2+3x^2y+12xy+15y-12xy-12$

$=3x^4-2xy^3+x^3y^2+3x^2y+15y-12$
=3-2.1(-2)^3+1^3.(-2)^2+3.1^2(-2)+15(-2)-12$
$=-25$
c.

$=2x^4+3x^3y-4x^3y-12xy+12xy=2x^4-x^3y$

$=x^3(2x-y)=(-1)^3[2(-1)-2]=-1.(-4)=4$

d. 

$=2x^2y+4x^2-5xy^2-10x+3xy^2-3x^2y$

$=(2x^2y-3x^2y)+4x^2+(-5xy^2+3xy^2)-10x$

$=-x^2y+4x^2-2xy^2-10x$

$=-3^2.(-2)+4.3^2-2.3(-2)^2-10.3=0$

phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 22:37

Sửa đề: \(A=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)

\(A=x^2\left(x+y\right)-y^2\left(x+y\right)+\left(x-y\right)\left(x+y\right)+2x+2y+3\)

\(=-x^2+y^2+\left(-x+y\right)-2+3\)

\(=-\left(x-y\right)\left(x+y\right)-\left(x-y\right)+1\)

\(=\left(x-y\right)\left(-x-y-1\right)+1\)

\(=\left(x-y\right)\left(1-1\right)+1=1\)