Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lại Thành Đạt
Xem chi tiết
pham trung thanh
Xem chi tiết
DanAlex
15 tháng 4 2017 lúc 21:28

{ x + 5y = 21 (1) 
{ 2x + 3z = 51 (2) 

. Ta có : (1) <=> x = 21 - 5y 

mà y ≥ 0 --> 21 - 5y ≤ 21 --> x ≤ 21 

. (2) <=> 3z = 51 - 2z ≥ 51 - 2.42 = 9 ( do x ≤ 21 --> -2x ≥ - 42) 

--> 3z ≥ 9 <=> z ≥ 3 

- nhân 2 vế của (2) với 2 rồi cộng với (1) ta có 

5x + 5y + 6z = 123 

<=> 5x + 5y + 5z = 123 - z 

<=> 5M = 123 - z 

. theo trên ta có z ≥ 3 --> 123 - z ≤ 123 - 3 = 120 

--> 5M ≤ 120 <=> M ≤ 24 

Dấu " = " xảy ra <=> x = 21 ; y = 0 ; z = 3 

roronoa zoro
Xem chi tiết
FC Việt Nam
Xem chi tiết
Tống Cao Sơn
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2023 lúc 23:32

Do \(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=3\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le3\)

Đặt \(\left\{{}\begin{matrix}\sqrt{5x+1}=a\\\sqrt{5y+1}=b\\\sqrt{5z+1}=c\end{matrix}\right.\)  \(\Rightarrow1\le a;b;c\le4\)

Đồng thời \(a^2+b^2+c^2=5\left(x+y+z\right)+3=18\)

Do \(1\le a\le4\Rightarrow\left(a-1\right)\left(4-a\right)\ge0\Rightarrow5a\ge a^2+4\)

\(\Rightarrow a\ge\dfrac{a^2+4}{5}\)

Tương tự: \(b\ge\dfrac{b^2+4}{5}\) ; \(c\ge\dfrac{c^2+4}{5}\)

Cộng vế: \(a+b+c\ge\dfrac{a^2+b^2+c^2+12}{5}=6\)

\(\Rightarrow A_{min}=6\) khi \(\left(a;b;c\right)=\left(1;1;4\right)\) và hoán vị hay \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị

Minh Anh
Xem chi tiết
david thomson
Xem chi tiết
Não Gà
30 tháng 10 2020 lúc 20:23

Tham khảo

https://olm.vn/hoi-dap/tim-kiem?q=Cho+x;y;z%3E=0+th%E1%BB%8Fa+m%C3%A3n+x+5y=21+v%C3%A0+2x+3z=51T%C3%ACm+GTLN+P=(x+y+z)2&id=911653

Khách vãng lai đã xóa
Ngọc Vĩ
Xem chi tiết
Thắng Nguyễn
12 tháng 6 2016 lúc 22:00

bạn tham khảo TIM GTLN CUA TONG X+Y+Z BIET X+5Y = 21 ; 2X+3Z = 51 ; X,Y,Z >= 0? | Yahoo Hỏi & Đáp

Võ Đông Anh Tuấn
12 tháng 6 2016 lúc 21:53

Em mới học lớp 7

Hưng Nguyễn Minh
12 tháng 6 2016 lúc 22:00

"em" mới học lớp 10

ChiBônBôn
Xem chi tiết
Lữ- Khách- Vô-Tình
11 tháng 3 2018 lúc 8:45

Cộng hai vế ta được: 5(x+y+z)+2y=5045

Để  5(x+y+z) lớn nhất thì 2y nhỏ nhất

Mà 2y lớn hơn hoặc bằng 0 nên 2ymin=0

=>  5(x+y+z)max=5045=> A=x+y+z=5045 <=> y=0 => x=1012 => z=-1