Do \(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=3\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le3\)
Đặt \(\left\{{}\begin{matrix}\sqrt{5x+1}=a\\\sqrt{5y+1}=b\\\sqrt{5z+1}=c\end{matrix}\right.\) \(\Rightarrow1\le a;b;c\le4\)
Đồng thời \(a^2+b^2+c^2=5\left(x+y+z\right)+3=18\)
Do \(1\le a\le4\Rightarrow\left(a-1\right)\left(4-a\right)\ge0\Rightarrow5a\ge a^2+4\)
\(\Rightarrow a\ge\dfrac{a^2+4}{5}\)
Tương tự: \(b\ge\dfrac{b^2+4}{5}\) ; \(c\ge\dfrac{c^2+4}{5}\)
Cộng vế: \(a+b+c\ge\dfrac{a^2+b^2+c^2+12}{5}=6\)
\(\Rightarrow A_{min}=6\) khi \(\left(a;b;c\right)=\left(1;1;4\right)\) và hoán vị hay \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị