Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TFBoys
Xem chi tiết
Viet hung Nguyen
13 tháng 9 2018 lúc 20:03

câu a: 9x^2-6x+2=(3x-1)^2+1>=1>0 mọi x 

câu b:x^2+x+1=(x-1/2)^2+3/4>0 với mới x

Viet hung Nguyen
13 tháng 9 2018 lúc 20:06

2 câu cuối ko rõ đề

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 1 2018 lúc 3:35

Đáp án C

Đặt t = 2 x 2 − 2 x , t ∈ 0 ; + ∞ ⇒ B P T ⇔ 2 t + t ≥ m 1  

Ta có  t + 2 t ≥ 2 t . 2 t = 2 2 ⇒ 1 ⇔ m ≤ 2 2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 1 2017 lúc 5:05

*Xét phương trình  (m2 +1).x2 – (m- 6)x -  2= 0 có a= m2 + 1 >0  và c = -2 < 0 nên ac< 0 mọi m.

=>  Phương trình (1) luôn có nghiệm mọi m.

* Phương trình x 2 + m + 3 x - 1 = 0  có ac= 1. (-1) < 0 nên phương  trình này luôn có nghiệm mọi m.

* Xét (3) mx2 - 2x – m = 0  . Khi m= 0 thì (3) trở thành:  - 2x = 0 đây là phương trình bậc nhất có nghiệm duy nhất là x = 0.

* Xét (4) có :

∆ = - 2 m 2 - 4 . 2 - 1 - m = 4 m 2 + 8 + 8 m = 4 m 2 + 8 m + 4 + 4 = 4 m + 1 2 + 4 > 0   ∀ m

 Nên trình (4) luôn có 2 nghiệm phân biệt với mọi m.

Chọn C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 9 2017 lúc 5:32

+ 2x2 + y2 – 8x + 2y – 1 = 0 không phải phương trình đường tròn vì hệ số của x2 khác hệ số của y2.

+ Phương trình x2 + y2 + 2x – 4y – 4 = 0 có :

a = –1; b = 2; c = –4 ⇒ a2 + b2 – c = 9 > 0

⇒ phương trình trên là phương trình đường tròn.

+ Phương trình x2 + y2 – 2x – 6y + 20 = 0 có :

a = 1; b = 3; c = 20 ⇒ a2 + b2 – c = –10 < 0

⇒ phương trình trên không là phương trình đường tròn.

+ Phương trình x2 + y2 + 6x + 2y + 10 = 0 có :

a = –3; b = –1; c = 10 ⇒ a2 + b2 – c = 0 = 0

⇒ phương trình trên không là phương trình đường tròn.

Nguyễn Linh
Xem chi tiết
oki pạn
4 tháng 2 2022 lúc 10:20

lớp 8 có pt bậc 2 ak??

hưng phúc
4 tháng 2 2022 lúc 10:29

\(m,x^2+6x-16=0\)

\(\Leftrightarrow x^2-2x+8x-16=0\)

\(\Leftrightarrow x\left(x-2\right)+8\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+8\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=2\end{matrix}\right.\)

\(n,2x^2+5x-3=0\)

\(\Leftrightarrow2x^2-x+6x-3=0\)

\(\Leftrightarrow x\left(2x-1\right)+3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

hưng phúc
4 tháng 2 2022 lúc 10:32

\(k,x\left(2x-7\right)-4x+14=0\)

\(\Leftrightarrow2x^2-4x-7x+14=0\)

\(\Leftrightarrow2x\left(x-2\right)-7\left(x-2\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 7 2017 lúc 16:39

Chọn D

Bảng xét dấu

Dựa vào bảng xét dấu, ta có tập nghiệm của bất phương trình đã cho là

Cris devil gamer
Xem chi tiết
Phạm Huỳnh Hoài Thương
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 3 2023 lúc 14:12

Bài 2:

a: =>2x^2-4x+1=x^2+x+5

=>x^2-5x-4=0

=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)

b: =>11x^2-14x-12=3x^2+4x-7

=>8x^2-18x-5=0

=>x=5/2 hoặc x=-1/4

Khánh Linh
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
30 tháng 8 2021 lúc 21:52

a) \(9x^2-6x+11=\left(3x\right)^2-2.3x+1+10=\left(3x-1\right)^2+10>0\forall x\)

b) \(3x^2-12x+81=3.\left(x^2-4x+9\right)=3.\left(x-2\right)^2+15>0\forall x\)

c) \(5x^2-5x+4=5.\left(x^2-x+\dfrac{4}{5}\right)=5.\left(x^2-x+\dfrac{1}{4}+\dfrac{11}{20}\right)=5.\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\forall x\)

d) \(2x^2-2x+9=2.\left(x^2-x+\dfrac{9}{2}\right)=2.\left(x-\dfrac{1}{2}\right)^2+\dfrac{17}{2}>0\forall x\)

Rin Huỳnh
30 tháng 8 2021 lúc 21:53

a) = (3x-1)^2+10

Do (3x-1)^2>=0 với mọi x

--> (3x-1)^2+10>0 với mọi x

Lấp La Lấp Lánh
30 tháng 8 2021 lúc 21:53

a) \(9x^2-6x+11=\left(3x-1\right)^2+10\ge10>0\)

b) \(3x^2-12x+81=3\left(x-2\right)^2+69\ge69>0\)

c) \(5x^2-5x+4=5\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)

d) \(2x^2-2x+9=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{17}{2}\ge\dfrac{17}{2}>0\)