Cho 2 đa thức :
A(x)=2x2 _ 5x+1
B(x)=2x2 _ 3x-4
Hãy tìm giá trị của x để hai đa thức trên bằng nhau.
cho đa thức : f(x) = 2x2- 3x + 4
a. tính giá trị của f(x) tại x=2
b. tìm đa thức h(x) biết : h(x) - f(x) = -2x2 + x - 1
a: f(2)=2*2^2-3*2+4=8-6+4=2+4=6
b: h(x)=-2x^2+x-1+f(x)
=-2x^2+x-1+2x^2-3x+4
=-2x+3
\(a,\) \(f\left(2\right)=2.2^2-3.2+4\) \(\Rightarrow f\left(2\right)=6\)
\(b,h\left(x\right)-f\left(x\right)=-2x^2+x-1\)
\(\Rightarrow h\left(x\right)=-2x^2+x-1+f\left(x\right)\)
\(\Rightarrow h\left(x\right)=-2x^2+x-1+2x^2-3x+4\)
\(\Rightarrow h\left(x\right)=-2x+3\)
Cho hai đa thức f (x)=3x3 +5x−2x2 −7 và g(x)=3x3 −(2x2 −5x)+7x2 +3
a/ Thu gọn và sắp xếp f(x), g(x) theo thứ tự bậc giảm dần. Tìm bậc của chúng b/Tính N(x)=g(x)−f(x) và M(x)=2.f(x)+g(x)
c/ Tính giá trị của M(x) biết x2-3x=0 d/ Tìm giá trị nhỏ nhất của N(x).
a: F(x)=3x^3-2x^2+5x-7
G(x)=3x^3-2x^2+5x+7x^2+3=3x^3+5x^2+5x+3
Bậc của F(x),G(x) đều là 3
b: N(x)=G(x)-F(x)
\(=3x^3+5x^2+5x+3-3x^3+2x^2-5x+7=7x^2+10\)
M(x)=2F(x)+G(x)
\(=6x^3-4x^2+10x-14+3x^3+5x^2+5x+3\)
\(=9x^3+x^2+15x-11\)
c: x^2-3x=0
=>x=0 hoặc x=3
\(M\left(0\right)=9\cdot0^3+0^2+15\cdot0-11=-11\)
\(M\left(3\right)=9\cdot3^3+3^2+15\cdot3-11=286\)
d: N(x)=7x^2+10>=10
Dấu = xảy ra khi x=0
Cho 2 đa thức
A= 4x3- 3xy + x + 2
B= 3x3 - 3xy +3x -3
Chứng tỏ không có giá trị nào của biến x thõa mãn để 2 giá trị của 2 đa thức A và B bằng nhau
PT A = B
<=> 4x3 - 3xy + x + 2 = 3x3 - 3xy + 3x - 3
<=> x3 - 2x + 5 = 0
Phương trình bậc 3 luôn có ít nhất 1 nghiệm mà.
Cho phân thức C=\(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\)
a, Tìm điều kiện của x để P xác định
b, Tìm giá trị của x để phân thức bằng 1
`a)ĐK:(x+1)(2x-6) ne 0`
`<=>(x+1)(x-3) ne 0`
`<=> x ne -1,x ne 3`
`b)C=(3x^2+3x)/((x+1)(2x-6))`
`=(3x(x+1))/((x+1)(2x-6))`
`=(3x)/(2x-6)`
`C=1`
`=>3x=2x-6`
`<=>x=-6(tm)`
Vậy `x=-6`
cho phân thức: \(\dfrac{x^2-4x+4}{x^2-4}\)
a, Với giá trị nào của x thì giá trị của phân thức xác định
b, Hãy rút gọn phân thức
c, Tính giá trị của phân thức tại |x|=3
d, Tìm giá trị của x để giá trị của phân thức bằng 2
a, ĐKXĐ: x2-4≠0 ⇔ x≠±2
b, \(\dfrac{x^2-4x+4}{x^2-4}\)=\(\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)=\(\dfrac{x-2}{x+2}\)
c, |x|=3
TH1: x≥0 thì x=3 (TMĐK)
TH1: x<0 thì x=-3 (TMĐK)
Thay x=3 và biểu thức ta có:
\(\dfrac{3-2}{3+2}\)=\(\dfrac{1}{5}\)
Thay x=-3 và biểu thức ta có:
\(\dfrac{-3-2}{-3+2}\)=5
cho phân thức: \(\dfrac{x^2-4x+4}{x^2-4}\)
a, Với giá trị nào của x thì giá trị của phân thức xác định
b, Hãy rút gọn phân thức
c, Tính giá trị của phân thức tại |x|=3
d, Tìm giá trị của x để giá trị của phân thức bằng 2
`a)ĐK:x^2-4 ne 0<=>x^2 ne 4`
`<=>x ne 2,x ne -2`
`b)A=(x^2-4x+4)/(x^2-4)`
`=(x-2)^2/((x-2)(x+2))`
`=(x-2)/(x+2)`
`c)|x|=3`
`<=>` \(\left[ \begin{array}{l}x=3\\x=-3\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}A=\dfrac{3-2}{3+2}=\dfrac15\\x=\dfrac{-3-2}{-3+2}=5\end{array} \right.\)
`d)A=2`
`=>x-2=2(x+2)`
`<=>x-2=2x+4`
`<=>x=-6`
a, ĐKXĐ: \(x^2-4\ne0\Leftrightarrow x\ne\pm2\)
b, Ta có: \(\dfrac{x^2-4x+4}{x^2-4}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\) (*)
c, \(\left|x\right|=3\Rightarrow x=\pm3\)
_ Thay x = 3 vào (*), ta được: \(\dfrac{3-2}{3+2}=\dfrac{1}{5}\)
_ Thay x = -3 vào (*), ta được: \(\dfrac{-3-2}{-3+2}=5\)
d, Có: \(\dfrac{x-2}{x+2}=2\)
\(\Leftrightarrow x-2=2\left(x+2\right)\)
\(\Leftrightarrow x-2=2x+4\)
\(\Leftrightarrow x=-6\left(tm\right)\)
Vậy...
cho phân thức: \(\dfrac{2x^2-4x+8}{x^3+8}\)
a, Với điều kiện nào của x thì giá trị của phân thức xác định
b, Hãy rút gọn phân thức
c, Tính giá trị của phân thức tại x=2
d, Tìm giá trị của x để giá trị của phân thức bằng 2
a, ĐKXĐ: x3+8≠0 ⇔ x≠-2
b, \(\dfrac{2x^2-4x+8}{x^3+8}\)=\(\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)=\(\dfrac{2}{x+2}\)
c, vì x=2 thỏa mãn đkxđ nên khi thay vào biểu thức ta có:
\(\dfrac{2}{2+2}\)=\(\dfrac{1}{2}\)
d, \(\dfrac{2}{x+2}\)=2 ⇔ 2x+4=2 ⇔ 2x=-2 ⇔ x=-1 (TMĐKXĐ)
Nên khi phân thức bằng 2 thì x=-1
Cho đa thức P=3x^2+5
a) Tìm giá trị của đa thức P khi x= -1; x= 0; x= 3
b) Chứng tỏ rằng đã thức P luôn dương vơi mọi giá trị của x
a/ \(+,x=1\Leftrightarrow P=3.1^2+5=8\)
+, \(x=0\Leftrightarrow P=3.0^2+5=5\)
+, \(x=3\Leftrightarrow P=3.3^2+5=17\)
b/ Với mọi x ta có :
\(3x^2\ge0\)
\(5>0\)
\(\Leftrightarrow3x^2+5>0\)
\(\Leftrightarrow P>0\)
\(\Leftrightarrow P\) luôn dương với mọi x
Cho hai đa thức P=5x^2+6xy-y^2 và Q=2y^2-2x^2-6xy.Chứng minh rằng không có giá trị nào của x và y để hai đa thức P và Q cùng có giá trị âm
\(P+Q=5x^2+6xy-y^2+2y^2-2x^2-6xy=3x^2+y^2\ge0\forall x,y\)
Vậy P,Q không thể cùng có giá trị âm