5. Cho pt : 2x2 - (2m + 1 ) . x -4m - 5 = 0 m? Để pt x1 , x2 trái dấu t/m x1 = 2 |x2|
3. Cho pt : x^2 + x + 2m - 4 =0 M ? pt có 2No p biệt x1 , x2 t/m : x^2 1= 2x2 + 5
\(\Delta'=1-4\left(2m-4\right)>0\Rightarrow m< \dfrac{17}{8}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=2m-4\end{matrix}\right.\)
Từ \(x_1+x_2=-1\Rightarrow x_2=-1-x_1\)
Thế vào \(x_1^2=2x_2+5\)
\(\Rightarrow x_1^2=2\left(-1-x_1\right)+5\)
\(\Leftrightarrow x_1^2+2x_1-3=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=1\Rightarrow x_2=-2\\x_1=-3\Rightarrow x_2=2\end{matrix}\right.\)
Thế vào \(x_1x_2=2m-4\)
\(\Rightarrow\left[{}\begin{matrix}2m-4=-2\\2m-4=-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\) (thỏa mãn)
Tìm m để PT: x2 - 2x + 4m + 5 = 0 có 2 nghiệm trái dấu thỏa mãn x1 = 3|x2|
Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\Leftrightarrow4m+5< 0\Rightarrow m< -\dfrac{5}{4}\)
\(x_1=3\left|x_2\right|>0\Rightarrow x_1>0\Rightarrow x_2< 0\Rightarrow3\left|x_2\right|=-3x_2\)
\(\Rightarrow x_1=-3x_2\)
Kết hợp với hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1=-3x_2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1=3\\x_2=-1\end{matrix}\right.\)
Mà \(x_1x_2=4m+5\Rightarrow4m+5=-3\Rightarrow m=-2\)
Cho pt x2 -(m-2)x-m2 +3m-4=0 (*)
a, Giải (*) khi m =0
b) CM pt có hai nghiệm trái dấu vs mọi m
c, Tìm m để pt (*) có nghiệm x1 x2 thoả mãn (x1+2x2)(x2+2x1)
chủ yếu là hỏi câu c hả? tớ làm mỗi đoạn đưa về tổng - tích thôi, bạn giải thấy khó chỗ nào thì hỏi cụ thể nhe ^^
\(\left(x_1+2x_2\right)\left(x_2+2x_1\right)=x_1x_2+2x_2^2+2x_1^2+4x_1x_2=2\left(x_1+x_2\right)^2-4x_1x_2+5x_1x_2\)
đến đây Vi-ét đc òi
Gotcha Tokoyami
Có \(\Delta=\left(m-2\right)^2-4\left(-m^2+3m-4\right)\)
\(=m^2-4m+4+4m^2-12m+16\)
\(=5m^2-16m+20\)
\(=5\left(m^2-\frac{16}{5}m+4\right)\)
\(=5\left[\left(m^2-2.\frac{8}{5}m+\frac{64}{25}\right)+\frac{36}{25}\right]\)
\(=5\left[\left(m-\frac{8}{5}\right)^2+\frac{36}{25}\right]>0\forall m\)
Nên pt có 2 nghiệm phân biệt với mọi m
a, Với m = 0 thì pt trở thành
\(x^2+2x-4=0\)
Có \(\Delta'=1+4=5>0\)
\(\Rightarrow\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)
b, Theo hệ thức Vi-et \(x_1x_2=-m^2+3m-4=-\left(m-\frac{3}{2}\right)^2-\frac{7}{4}< 0\)
nên pt có 2 nghiệm trái dấu
c, Thiếu đề , nhưng làm hộ 1 bước biến đổi như bạn dưới
Cho pt x^2-(2m-1)x+m(m-1) = 0. Gọi x1,x2 là hai nghiệm của pt với x1<x2. Cm x1^2-2x2+3>=0
Cho pt x2 – 2mx -4m -5=0
a) Giải pt khi m= -2
b) Tìm m để pt có 2 nghiệm x1,x2 thỏa mãn ½ x12 - ( m – 1 ) x1+x2 – 2m + 33/2 =4059
a) Thay m=-2 vào phương trình, ta được:
\(x^2+4x+3=0\)
a=1; b=4; c=3
Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=-1;x_2=\dfrac{-c}{a}=-3\)
Cho phương trình x^2-(2m+3)*x+m^2+2m+2=0 a. tìm m để pt có 2 nghiệm x1,x2 thỏa mãn x1=2x2 b. tìm m để pt có 2 nghiệm x1,x2 thỏa mãn x1^3+x2^3=112 c, lập pt bậc 2 có 2 nghiệm là 1/x1 và 1/x2 d. tìm hệ thức liên hệ giữa x1 và x2 mà không phụ thuộc vào tham số m
1.cho pt : x^2 -mx + 2m -3 =0 m ? Để pt có b biệt x1 ; x2 t/ mãn : x^2 1. x2 + x^2 2. x1 = 5
Δ=(-m)^2-4(2m-3)
=m^2-8m+12
=(m-2)(m-6)
Để phương trình co 2 nghiệm pb thì (m-2)(m-6)>0
=>m>6 hoặc m<2
x1^2*x2+x1*x2^2=5
=>x1x2(x1+x2)=5
=>(2m-3)*m=5
=>2m^2-3m-5=0
=>2m^2-5m+2m-5=0
=>(2m-5)(m+1)=0
=>m=5/2(loại) hoặc m=-1(nhận)
Cho pt xã -4x4 m=0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức 2x1 + x2 = 1 Cho pt: 2x2 3x-2m +3 = 0 ("). Tìm m để phương trình (") có 2 nghiệm phân biệt x1, x2 thỏa mãn hệ thức x1/x2 + xz/x1 =3 Cho pt xã 4x - m + 3 = 0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức x1-x2=7 Giải gấp chi tiết giúp e vs ạ
cho PT x^2 -(4m -1)x +3m^2 -2m = 0
tìm m để PT có hai nghiệm phân biệt. x1, x2
Thỏa x1^2+ x2^2=7
ta có : \(\Delta=\left(4m-1\right)^2-4\left(3m^2-2m\right)=16m^2-8m+1-12m^2+8m\)
\(\Leftrightarrow\Delta=4m^2+1\ge1>0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt với mọi giá trị của \(m\)
áp dụng định lí vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=4m-1\\x_1x_2=3m^2-2m\end{matrix}\right.\)
ta có : \(x_1^2+x_2^2=7\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=7\)
\(\Leftrightarrow\left(4m-1\right)^2-2\left(3m^2-2m\right)=7\)
\(\Leftrightarrow16m^2-8m+1-6m^2+4m-7=0\Leftrightarrow10m^2-4m-6=0\)
\(\Leftrightarrow\left(m-1\right)\left(10m+6\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{-3}{5}\end{matrix}\right.\)
vậy \(m=1;m=\dfrac{-3}{5}\)