khai triển
a) (2x^2+3y)^3
b)(1/2x-3)^3
bài 2.7 khai triển
a (x^2+2y)^3 b(1/2x-1)^3
a: \(\left(x^2+2y\right)^3\)
\(=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot2y+3\cdot x^2\cdot\left(2y\right)^2+\left(2y\right)^3\)
\(=x^6+6x^4y+12x^2y^2+8y^3\)
b: \(\left(\dfrac{1}{2}x-1\right)^3\)
\(=\left(\dfrac{1}{2}x\right)^3-3\cdot\left(\dfrac{1}{2}x\right)^2\cdot1+3\cdot\dfrac{1}{2}x\cdot1^2-1^3\)
\(=\dfrac{1}{8}x^3-\dfrac{3}{4}x^2+\dfrac{3}{2}x-1\)
Khai triển
a) \(\left(2x-5y\right)^2\)
b) \(\left(3x+2y\right)^2\)
c) \(\left(3x+4y\right)\left(4y-3x\right)\)
Lời giải:
a. $=(2x)^2-2.2x.5y+(5y)^2=4x^2-20xy+25y^2$
b. $=(3x)^2+2.3x.2y+(2y)^2=9x^2+12xy+4y^2$
c. $=(4y+3x)(4y-3x)=(4y)^2-(3x)^2=16y^2-9x^2$
\(a.4x^2-10xy+25y^2\)
\(b.9x^2+6xy+4y^2\)
\(c.16y^2-9x^2\)
Rút gọn rồi tính giá trị của biểu thức
a) M=(2x−3y)(2x+3y) tại x=1/2 và y=1/3
b) N=(2x−y)(4x2+2xy+y2) tại x=1 và y= 3
a: \(N=\left(2x-3y\right)\left(2x+3y\right)=\left(2x\right)^2-\left(3y\right)^2\)
\(=4x^2-9y^2\)
Thay x=1/2 và y=1/3 vào N, ta được:
\(N=4\cdot\left(\dfrac{1}{2}\right)^2-9\left(\dfrac{1}{3}\right)^2\)
\(=4\cdot\dfrac{1}{4}-9\cdot\dfrac{1}{9}\)
=1-1
=0
b: \(N=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)
\(=\left(2x\right)^3-y^3=8x^3-y^3\)
Khi x=1 và y=3 thì \(N=8\cdot1^3-3^3=8-27=-19\)
Bai 1 TINH
a) x ^2 . x -2x^3
b) 6 x^2y . 3xy - 2y^2.x +y
C) 4x^2 +5x -1 .2x^3 -3x
d)-8x^3y + 2y^4 . 3xy^3 - 2x^4 +7y^4
GIUP MINH NHÀ
a) (x - 2y)3
b) (2x + y)3
c) (\(\dfrac{1}{3}\)x - 1)3
d) (x + \(\dfrac{1}{3}\)y)3
e) (2x - 3y)3
f) (x2 - 2y)3
g) (\(\dfrac{1}{2}\)x - y)3
\(\)a: \(\left(x-2y\right)^3\)
\(=x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=x^3-6x^2y+12xy^2-8y^3\)
b: \(\left(2x+y\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)
\(=8x^3+12x^2y+6xy^2+y^3\)
c: \(\left(\dfrac{1}{3}x-1\right)^3=\left(\dfrac{1}{3}x\right)^3-3\cdot\left(\dfrac{1}{3}x\right)^2\cdot1+3\cdot\dfrac{1}{3}x\cdot1^2-1^3\)
\(=\dfrac{1}{27}x^3-\dfrac{1}{3}x^2+x-1\)
d: \(\left(x+\dfrac{1}{3}y\right)^3\)
\(=x^3+3\cdot x^2\cdot\dfrac{1}{3}y+3\cdot x\cdot\left(\dfrac{1}{3}y\right)^2+\left(\dfrac{1}{3}y\right)^3\)
\(=x^3+x^2y+\dfrac{1}{3}xy^2+\dfrac{1}{27}y^3\)
e: (2x-3y)3
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot3y+3\cdot2x\cdot\left(3y\right)^2-\left(3y\right)^3\)
\(=8x^3-36x^2y+54xy^2-27y^3\)
f: \(\left(x^2-2y\right)^3\)
\(=\left(x^2\right)^3-3\cdot\left(x^2\right)^2\cdot2y+3\cdot x^2\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=x^6-6x^4y+12x^2y^2-8y^3\)
g: \(\left(\dfrac{1}{2}x-y\right)^3=\left(\dfrac{1}{2}x\right)^3-3\cdot\left(\dfrac{1}{2}x\right)^2\cdot y+3\cdot\dfrac{1}{2}x\cdot y^2-y^3\)
\(=\dfrac{1}{8}x^3-\dfrac{3}{4}x^2y+\dfrac{3}{2}xy^2-y^3\)
Khai triển các hằng đẳng thức sau.
a) (x+1)3 b) (2x+3)3 c) (x+\(\dfrac{1}{2}\))3 d) (x2-2)3
e) (2x-3y)3
Giúp mình nha
\(a,=x^3+3x^2+3x+1\\ b,=8x^3+36x^2+54x+27\\ c,=x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}\\ d,=x^6-6x^4+12x^2-8\\ e,=8x^3-36x^2y+54xy^2-27y^3\)
Khai triển các hằng đẳng thức sau.
a) (x+1)3 b) (2x+3)3 c) (x+1212)3 d) (x2-2)3
e) (2x-3y)3
Giúp mình với
a)
x3+3x2+3x+1
b)8x3+18x2+54x+27
c)x3+3636x2+3636x+1780360128
d)x6-6x2+12x-8
e)
8x3-36x2y+54xy2-27y3
1.Khai triển các hằng đẳng thức sau ^^
a) (2x^3-y^2)^3
b) (x-3y)(x^2+3xy+9y^2)
c) ( x+2y+z) (x+2y-z)
d) (2x^3y -0,5x^2)^3
e) (x^2-3).(x^4+3x^2+9)
f) (2x-1)(4x^2+2x+1)
1.Khai triển các hằng đẳng thức sau ^^
a) (2x^3-y^2)^3
b) (x-3y)(x^2+3xy+9y^2)
c) ( x+2y+z) (x+2y-z)
d) (2x^3y -0,5x^2)^3
e) (x^2-3).(x^4+3x^2+9)
f) (2x-1)(4x^2+2x+1)
a) \(\left(2x^3-y^2\right)^3\)
\(=\left(2x^3\right)^3-3\cdot\left(2x^3\right)^2\cdot y^2+3\cdot2x^3\cdot\left(y^2\right)^{^2}-\left(y^2\right)^3\)
\(=8x^9-3\cdot4x^6y^2+3\cdot2x^3y^4-y^6\)
\(=8x^9-12x^6y^2+6x^3y^4-y^6\)
b) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
c) \(\left(x+2y+z\right)\left(x+2y-z\right)\)
\(=\left(x+2y\right)^2-z^2\)
\(=x^2+4xy+4y^2-z^2\)
d) \(\left(2x^3y-0,5x^2\right)^3\)
\(=\left(2x^3y-\dfrac{1}{2}x^2\right)^3\)
\(=8x^9y^3-6x^8y^2+\dfrac{3}{2}x^7y-\dfrac{1}{8}x^6\)
e) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)\)
\(=\left(x^2-3\right)\left(4x^2+9\right)\)
\(=4x^4+9x^2-12x^2-27\)
\(=4x^4-3x^2-27\)
f) \(\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=\left(2x\right)^3-1^3\)
\(=8x^3-1\)
\(a,\left(2x^3-y^2\right)^3=8x^9-12x^6y^2+6x^3y^4-y^6\)\(b,\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-27y^3\)
\(c,\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)\(d,\left(2x^3y-0,5x^2\right)^3=8x^9y^3-6x^4y^2x^2+3x^3yx^4-0,125x^6=8x^9y^3-6x^6y^2+3x^7y-0,125x^6\)