\(\dfrac{2014}{2015}\)...\(\dfrac{1999}{2000}\)
điền dấu tiếp nha mng
Tính
\(A=\left(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}+1\right)\left(\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}\right)-\left(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}\right)\left(\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}+1\right)\)
Đặt \(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}=B;\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}=C\)
\(A=\left(B+1\right)\cdot C-B\cdot\left(C+1\right)\)
\(=BC+C-BC-B\)
=C-B
\(=\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}-\dfrac{1}{5}-\dfrac{2013}{2014}-\dfrac{2015}{2016}=-\dfrac{1}{10}\)
\(A=\left(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}+1\right)\left(\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}\right)-\left(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}\right)\left(\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}+1\right)\)
tất nhên là bằng 00000000000000000000000000000000000000
Cho A = \(\dfrac{2015}{2014^2+1}+\dfrac{2015}{2014^2+2}+\dfrac{2015}{2014^3+3}+....+\dfrac{2015}{2014^2+2014}\)
Chứng minh rằng A không là số nguyên dương
Các bạn ơi , giúp mình với T T
Chứng minh
\(Â=\dfrac{2013}{2013+2014}+\dfrac{2014}{2014+2015}+\dfrac{2015}{2015+2016}+\dfrac{2016}{2016+2017}< 2\)
\(\dfrac{2013}{2013+2014}< \dfrac{2013}{2013+2013}=\dfrac{1}{2}\)
Tương tự cộng theo vế suy ra đpcm
Tìm x biết
\(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)x=\dfrac{2015}{1}+\dfrac{2014}{2}+...+\dfrac{2}{2014}+\dfrac{1}{2015}\)
CMR:\(\dfrac{2014}{\sqrt{2015}}+\dfrac{2015}{\sqrt{2014}}>\sqrt{2014}+\sqrt{2015}\)
Ta có : \(\frac{2014}{\sqrt{2015}}\)+ \(\frac{2015}{\sqrt{2014}}\) = \(\frac{2015-1}{\sqrt{2015}}\) + \(\frac{2014+1}{\sqrt{2014}}\)
= \(\sqrt{2015}\) + \(\sqrt{2014}\) + \(\frac{1}{\sqrt{2014}}\) - \(\frac{1}{\sqrt{2015}}\)
Vì \(\sqrt{2014}\) < \(\sqrt{2015}\) \(\Rightarrow \) \(\frac{1}{\sqrt{2014}}\)>\(\frac{1}{\sqrt{2015}}\) \(\Rightarrow \) \(\frac{1}{\sqrt{2014}}\)-\(\frac{1}{\sqrt{2015}}\) > 0
Nên \(\sqrt{2015}\) + \(\sqrt{2014}\) + \(\frac{1}{\sqrt{2014}}\) - \(\frac{1}{\sqrt{2015}}\) > \(\sqrt{2015}\) + \(\sqrt{2014}\)
Hay \(\frac{2014}{\sqrt{2015}}\)+ \(\frac{2015}{\sqrt{2014}}\) > \(\sqrt{2014} + \sqrt{2015}\)
Cho:
A=\(\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)
B=\(\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)
Tính \(\dfrac{B}{A}\)
giúp mình nha, mình đang cần gấp gấp gấp lắm....!HELP ME!!!
\(B=\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)
\(B=2016+\dfrac{2015}{2}+\dfrac{2014}{3}+....+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)
\(B=1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{3}{2014}+1\right)+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)\)
\(B=\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+....+\dfrac{2017}{2014}+\dfrac{2017}{2015}+\dfrac{2017}{2016}\)
\(B=2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)
\(\dfrac{B}{A}=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}=2017\)
\(\dfrac{B}{A}=\dfrac{\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{\dfrac{2017}{2017}+\left(\dfrac{2015}{2}+\dfrac{2}{2}\right)+\left(\dfrac{2014}{3}+\dfrac{3}{3}\right)+...+\left(\dfrac{1}{2016}+\dfrac{2016}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=2017\)
Vậy \(\dfrac{B}{A}=2017\)
So sánh \(\dfrac{2014}{2015}+\dfrac{2015}{2014}và\dfrac{666665}{333333}\)
Ta có:
\(\dfrac{2014}{2015}+\dfrac{2015}{2014}=1-\dfrac{1}{2015}+1+\dfrac{1}{2014}=2-\dfrac{1}{2015}+\dfrac{1}{2014}>2\)(Vì \(\dfrac{1}{2014}>\dfrac{1}{2015}\))
\(\dfrac{666665}{333333}=2-\dfrac{1}{333333}< 2\)
Vậy...
Điền dấu thích hợp (2013*2014+2012)/2014*2015-2016) ..... 2014/2015