Tim x
(2x+1)-\(\frac{1}{49}\)=\(\frac{4}{3.5}+\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{47.49}\)
Tìm x biết
a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)
b) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)
c) \(\frac{x-1}{2017}+\frac{x-2}{2016}=\frac{x-3}{2015}+\frac{x-4}{2014}\)
d) \(\frac{x+1}{2017}+\frac{x+2}{2016}=\frac{x+3}{2015}+\frac{x+4}{2014}\)
\(b)\) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(1-\frac{1}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(\frac{100}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(100=2x+4\)
\(\Leftrightarrow\)\(2x=96\)
\(\Leftrightarrow\)\(48\)
Vậy \(x=48\)
Chúc bạn học tốt ~
\(a)\) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)
\(\Leftrightarrow\)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(1-\frac{1}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(\frac{48}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(49=x+1\)
\(\Leftrightarrow\)\(x=48\)
Vậy \(x=48\)
Chúc bạn học tốt ~
Tim x biet
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
1/2(2/3.5+2/5.7+2/7.9+...+2/(2x+1)(2x+3))=15/93
1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/2x+1-1/2x+3)=15/93
1/2(1/3-1/2x+3)=15/93
=>1/3-1/2x+3=10/31
=>1/2x+3=1/93
=>2x+3=93
2x=93-3=90
=>x=45
Đặt \(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\Rightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{93}\)
\(\Rightarrow2x+3=93\)
\(2x=90\)
\(x=45\)
Vậy \(x=45\).
\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
=> \(\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}\right)=\frac{5}{31}\)
=> \(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2x+3}\right)=\frac{5}{31}\)
=> \(\frac{1}{3}-\frac{1}{2x+3}=\frac{5}{31}:\frac{1}{2}=\frac{5}{31}\cdot2=\frac{10}{31}\)
=> \(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}=\frac{1}{93}\)
=> 2x +3 = 93
=> 2x = 90 => x = 45
Tìm x biết:
a)\(\frac{x-1}{21}=\frac{3}{x+1}\)
b)\(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\)\(\frac{4}{41.45}=\frac{29}{45}\)
c)\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\)\(\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{93}\)
\(a,\frac{x-1}{21}=\frac{3}{x+1}\)
\(\Leftrightarrow\left[x-1\right]\left[x+1\right]=63\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Leftrightarrow x^2=8^2\)
\(\Leftrightarrow x=\pm8\)
\(b,\frac{7}{x}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left[\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}\right]=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left[\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right]=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\left[\frac{1}{5}-\frac{1}{45}\right]=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\Leftrightarrow\frac{7}{x}=\frac{21}{45}\)
\(\Leftrightarrow\frac{7}{x}=\frac{7}{15}\)
\(\Leftrightarrow x=15\)
Vậy x = 15
Bài cuối tương tự
Đây là bài 0,5đ đề 45' trường mình, các bn lm thử nhé
\(A=\frac{1}{1.3}-\frac{2}{3.5}+\frac{3}{5.7}-\frac{4}{7.9}+...-\frac{48}{95.97}+\frac{49}{97.99}\)
\(CMR:A>\frac{1}{4}\)
(Dấu "." là dấu "x" nhé)
A có tổng cộng 49 số hạng, nhóm 2 số hạng liên tiếp với nhau được:
\(A=\left(\frac{1}{1.3}-\frac{2}{3.5}\right)+\left(\frac{3}{5.7}-\frac{4}{7.9}\right)+...+\left(\frac{47}{93.95}-\frac{48}{95.97}\right)+\frac{49}{97.99}\)
\(A=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{93.97}+\frac{49}{97.99}\)=> \(4A=\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{93.97}+\frac{196}{97.99}=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{93}-\frac{1}{97}+\frac{196}{97.99}\)
=> \(4A=1-\frac{1}{97}+\frac{196}{97.99}=\frac{96}{97}+\frac{196}{97.99}=\frac{9700}{97.99}=\frac{100}{99}>1\)
\(4A>1=>A>\frac{1}{4}\)
Bn trừ 2 PS kiểu gì hay zậy?
Giúp mình nhá
tìm x, biết
\(\frac{1}{2}-\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}-\frac{1}{9.11}=\frac{4}{5}-x\)
\(\frac{1}{2}-\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}-\frac{1}{9.11}=\frac{4}{5}-x\)
<=> \(2.\frac{1}{2}-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)=\frac{8}{5}-2x\)
<=> \(1-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)=\frac{8}{5}-2x\)
<=> \(1-\left(1-\frac{1}{11}\right)-\frac{8}{5}=-2x\)
<=> \(-\frac{83}{55}=-2x\)
<=> \(x=\frac{83}{110}\)
tìm x,biết
\(\frac{1}{2}-\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}-\frac{1}{9.11}=\frac{4}{5}-x\)
1, tim x
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{5}{31}\)
Đặt A = \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{5}{31}\)
2A = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)
2A = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{\left(2x+1\right)}-\frac{1}{2x+3}=\frac{10}{31}\)
2A = \(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
Ta có : \(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{93}\)
=> 2x + 3 = 93
2x = 90
x = 45
tính Q=\(\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{47.49}\). kết quả là Q =
\(Q=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{47.49}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{47}-\frac{1}{49}\)
\(=\frac{1}{3}-\frac{1}{49}\)
\(=\frac{46}{147}\)
Vậy \(Q=\frac{46}{147}\)
Ta có : \(\frac{2}{3}Q=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{47.49}\)
\(\Rightarrow\frac{2}{3}Q=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}\)
\(\Rightarrow\frac{2}{3}Q=\frac{1}{3}-\frac{1}{49}=\frac{49}{147}-\frac{3}{147}=\frac{46}{147}\)
\(\Rightarrow Q=\frac{46}{147}\div\frac{2}{3}=\frac{138}{294}=\frac{23}{49}\)
Vậy ...
Tìm x: \(\left(\frac{10}{1.2}+\frac{10}{2.3}+...+\frac{10}{49.50}\right)+2x=\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{47.49}-7x\)
Ta có: \(\left(\frac{10}{1.2}+\frac{10}{2.3}+...+\frac{10}{49.50}\right)+2x=\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{47.49}-7x\) (1)
Xét vế trái ta có:
\(\left(\frac{10}{1.2}+\frac{10}{2.3}+...+\frac{10}{49.50}\right)+2x\)
\(=10.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)
\(=10.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)+2x\)
\(=10.\left(1-\frac{1}{50}\right)+2x\)
\(=10.\frac{49}{50}+2x\)
\(=\frac{49}{5}+2x\) (2)
Xét vế phải ta có:
\(\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{47.49}-7x\)
\(=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{47.49}\right)-7x\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)-7x\)
\(=2.\left(1-\frac{1}{49}\right)-7x\)
\(=2.\frac{48}{49}-7x\)
\(=\frac{96}{49}-7x\) (3)
Từ (1), (2) và (3) => \(\frac{49}{5}+2x=\frac{96}{49}-7x\)
\(\Rightarrow2x+7x=\frac{96}{49}-\frac{49}{5}\)
\(\Rightarrow9x=\frac{480}{245}-\frac{2401}{245}\)
\(\Rightarrow9x=-\frac{1921}{245}\)
\(\Rightarrow x=-\frac{1921}{245}:9=-\frac{1921}{2205}\)
Vậy \(x=-\frac{1921}{2205}\)
Chúc bạn học tốt!
Ta có:\(\left(10-\frac{10}{2}+\frac{10}{2}-\frac{10}{3}+...+\frac{10}{49}-\frac{10}{50}\right)+2x=\left(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+...+\frac{2}{47}-\frac{2}{49}\right)-7x\)
\(\left(10-\frac{10}{50}\right)+2x=\left(2-\frac{2}{49}\right)-7x\)
\(\frac{49}{5}+2x=\frac{96}{49}-7x\)
\(7x+2x=\frac{96}{49}-\frac{49}{5}\)
\(9x=-\frac{1921}{245}\)
\(x=-\frac{1921}{245}:9\)
\(x=-\frac{1921}{2205}\)
Vậy \(x=-\frac{1921}{2205}\)