trong mặt phẳng tọa độ oxy cho đường (d): y=2(n+1)x-2n .tìm n để đường thẳng (d) đi qua điểm A(2;6)
giải hộ tui cái đi đang cần gấp cực luôn ák
a) Tìm các giá trị của a và b để đường thẳng (d): y=ax+b đi qua hai điểm M(1;5) và N(2;8).
b) Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x – a + 1 và parabol (P): y = \(\dfrac{1}{2}x^2\).
1.Tìm a để đường thẳng a đi qua điểm A (-1;3)
2.Tìm a để (d) cắt (P) tại hai điểm phân biệt có tọa độ (\(x_1;x_2\)) và (\(x_2;y_2\)) thỏa mãn điều kiện \(x_1x_2\left(y_1+y_2\right)+48=0\)
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}a+b=5\\2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)
b:
1: Thay x=-1 và y=3 vào (d), ta được:
\(2\cdot\left(-1\right)-a+1=3\)
=>-a-1=3
=>-a=4
hay a=-4
trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y=nx-3 và parabol (p) y=\(x^2\)
1. tìm n để đường thẳng (d) đi qua điểm B(1;0)
2. tìm n để (d)cắt (p) tại hai điểm phân biệt có hoành độ lần lượt là \(x_1,x_2\)thỏa mản \(\left|x_1-x_2\right|=2\)
1. trong mặt phẳng tọa độ oxy đường thẳng (d) có pt y = ax + b . Tìm a và b để ( d ) đi qua M ( 1,-2) và N với đường thẳng y = x + 1
Sửa đề: (d)//y=x+1
Để (d) song song với đường thẳng y=x+1 thì \(\left\{{}\begin{matrix}a=1\\b\ne1\end{matrix}\right.\)
hay (d): y=x+b
Vì (d) đi qua M(1;-2) nên Thay x=1 và y=-2 vào hàm số y=x+b, ta được:
\(b+1=-2\)
hay b=-3
Vậy: a=1 và b=-3
Đề thiếu (N ... với đường thẳng y = x + 1)
2. Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=X’ và đường thẳng (d):
y=3x+m² -1
a) Tìm m để đường thẳng (d) đi qua điểm A(-1: 5).
b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x,,, thỏa
mãn |x|+2|x|=3.
Mn ơi giúp em với ạ 😭😭😭 Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d:y=x+m−1(m là tham số) và parabol (P):y= x²/2 1. Xác định tọa độ điểm A trên parabol (P) có hoành độ x=2. Tìm m để đường thẳng d đi qua điểm A. 2. Tìm m để đường thẳng d cắt parabol (P) tại hai điểm M(x;2), N(x;y) phân biệt nằm về hai phía của trục tung và có tung độ thỏa mãn: 2y1+ y2=12.
a: Thay x=2 vào (P),ta được:
y=2^2/2=2
2: Thay x=2 và y=2 vào (d), ta được:
m-1+2=2
=>m-1=0
=>m=1
Trong mặt phẳng tọa độ Oxy cho parabol (P): \(y=\dfrac{1}{2}x^2\) và đường thẳng (d): \(y=2x-m+1\) ( Với m là tham số )
a, Tìm m để đường thẳng (d) đi qua điểm A(-1;3)
b, Tìm m để (d) cắt (P) tại hai điểm phân biệt có tọa độ \(\left(x_1;y_1\right):\left(x_2;y_2\right)\) sao cho \(x_1x_2\left(y_1+y_2\right)+48=0\)
a: Thay x=-1 và y=3 vào (d), ta được:
-2-m+1=3
=>-1-m=3
=>m=-4
b: PTHĐGĐ là;
1/2x^2-2x+m-1=0
=>x^2-4x+2m-2=0
Δ=(-4)^2-4(2m-2)
=16-8m+8=-8m+24
Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0
=>m<3
x1x2(y1+y2)+48=0
=>x1x2(x1^2+x2^2)+48=0
=>(2m-2)[4^2-2(2m-2)]+48=0
=>(2m-2)(16-4m+4)+48=0
=>(2m-2)*(20-4m)+48=0
=>40m-8m^2-40+8m+48=0
=>-8m^2+48m+8=0
=>m=3+căn 10 hoặc m=3-căn 10
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d):y=(a-2)x+b đi qua điểm M(-2;-1) và song song với đường thẳng y=x+2. Tìm các số a và b
Vì (d)//y=x+2 nên a-2=1
hay a=3
Vậy: (d): y=x+b
Thay x=-2 và y=-1 vào (d), ta được:
b-2=-1
hay b=1
Bài 8: Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:\(\left\{{}\begin{matrix}x=-2-2t\\y=1+2t\end{matrix}\right.\left(t\in R\right)\) và điểm A(3;1).
1) Viết phương trình đường thẳng d’ đi qua A và vuông góc với đường thẳng d.
2) Tìm tọa độ giao điểm H của đường thẳng d và d’.
3) Xác định tọa độ điểm A’ đối xứng với A qua đường thẳng d.
4) Tìm tọa độ điểm M nằm trên đường thẳng d sao cho tổng khoảng cách MA+MO là nhỏ nhất.
5) Viết phương trình đường tròn (C) có tâm I nằm trên đường thẳng d và đi qua hai điểm A, O.
1: (d): x=-2-2t và y=1+2t nên (d) có VTCP là (-2;2)=(-1;1) và đi qua B(-2;1)
=>(d') có VTPT là (-1;1)
Phương trình (d') là;
-1(x-3)+1(y-1)=0
=>-x+3+y-1=0
=>-x+y+2=0
2: (d) có VTCP là (-1;1)
=>VTPT là (1;1)
Phương trình (d) là:
1(x+2)+1(y-1)=0
=>x+y+1=0
Tọa độ H là;
x+y+1=0 và -x+y+2=0
=>x=1/2 và y=-3/2
Trong mặt phẳng tọa độ Oxy, cho Parabol(P): y=x2 và đường thẳng (d): y=2(m+1)x-m2-4 (1), (m là tham số)
a) Tìm m để đường thẳng (d) đi qua A(0;-5)
b) Với giá trị nào của m để đường thẳng (d) cắt parabol (P) tại 2 điểm phân biệt có hoành độ x1; x2 thỏa mãn điều kiện: (2x1-1)(x22-2mx2+m2+3)=21
a: Thay x=0 và y=-5 vào (d), ta được:
2(m+1)*0-m^2-4=-5
=>m^2+4=5
=>m=1 hoặc m=-1
b:
PTHĐGĐ là;
x^2-2(m+1)x+m^2+4=0
Δ=(2m+2)^2-4(m^2+4)
=4m^2+8m+4-4m^2-16=8m-12
Để PT có hai nghiệm phân biệt thì 8m-12>0
=>m>3/2
x1+x2=2m+2; x1x2=m^2+4
(2x1-1)(x2^2-2m*x2+m^2+3)=21
=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21
=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21
=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21
=>(2x1-1)(2x2-1)=21
=>4x1x2-2(x1+x2)+1=21
=>4(m^2+4)-2(2m+2)+1=21
=>4m^2+16-4m-4-20=0
=>4m^2-4m-8=0
=>(m-2)(m+1)=0
=>m=2(nhận) hoặc m=-1(loại)