Chứng minh bất đẳng thức :
a) \(y^8-y^7+y^2-y+1>0\)
b)\(m^2+n^2+p^2+q^2+1\ge m\left(n+p+q+1\right)\)
Chứng minh các bất đẳng thức
a, \(y^8-y^7+y^2-y+1>0\)
b, \(m^2+n^2+p^2+q^2+1\ge m\left(n+p+q+1\right)\)
c, \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
d, \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)với \(a,b\ge0\)
c) \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow\)\(\left(ax\right)^2+2axby+\left(by\right)^2\le\left(ax\right)^2+\left(ay\right)^2+\left(bx\right)^2+\left(by\right)^2\)
\(\Leftrightarrow\)\(2axby\le\left(ay\right)^2+\left(bx\right)^2\)
\(\Leftrightarrow\)\(\left(ay\right)^2-2axby+\left(bx\right)^2\ge0\)
\(\Leftrightarrow\)\(\left(ay-bx\right)^2\ge0\) luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{a}{x}=\frac{b}{y}\)
a) cứ tach theo kieu a^2-2a+1 =(a-1)^2 >0 la ra
b)nhân 2 lên rồi trừ đi ghép hằng đẳng thức giống câu a la ra
d) dung bdt a^3+b^3>=a^2b+ab^2
cho các số thực dương x,y,x thỏa mãn xy ≥ 1 và z ≥1
Chứng minh bất đẳng thức \(\frac{x}{y+1}+\frac{y}{x+1}+\frac{z^3+2}{3\left(xy+1\right)}\ge\frac{3}{2}\)
Chứng minh bất đẳng thức
Cho x, y, z là các số dương (chứng minh hộ mình phần b) thôi)
a) CMR : \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
b) Cho x, y, z thỏa mãn : \(3+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=12\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\)
CMR : \(\dfrac{1}{4x+y+z}+\dfrac{1}{x+4y+z}+\dfrac{1}{x+y+4z}\le\dfrac{1}{6}\)
Chứng minh bất đẳng thức: \(\frac{1}{x^2}+\frac{1}{y^2}\ge\left(\frac{1}{a}+\frac{1}{b}\right)^2vớix,y,a,b\ne0và\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)
1) Cho m, n > 0, bất đẳng thức \(\left(m+n\right)^2\ge4mn\) tương đương với bất đẳng thức nào sau đây?
A. \(\left(m-n\right)^2+m+n\ge0\)
B. \(n\left(m-1\right)^2+m\left(n-1\right)^2\ge0\)
C. \(\left(m+n\right)^2+m+n\ge0\)
D. Tất cả đều đúng.
2) Với giá trị nào của m thì bất phương trình \(mx+m< 2n\) vô nghiệm?
3) Với hai số x,y dương thỏa xy = 36, bất đẳng thức nào sau đây đúng?
A. \(x+y\ge2\sqrt{xy}=12\)
B. \(\left(\dfrac{x+y}{2}\right)^2>xy=36\)
C. \(x+y\ge2\sqrt{xy}=72\)
D. Tất cả đều đúng
Chứng minh bất đẳng thức:
a) \(x^2\:+\:\frac{y^2}{16}\:\ge\) \(\frac{1}{2}xy\)
b) \(\left(m+4\right)^2\:\ge16m\)
a, Ta có:
x2+y2/16 >= 1/2 xy
(=) x2-1/2xy +y2/16 >= 0
(=) x2- 2.x.1/4 . y + (y/4)2>= 0
(=) (x-y/4)2>= 0
Ta có
(x-y/4)2>= 0 với mọi x,y
Dấu "=" xảy ra khi (=) (x-y/4)2= 0
(=) x - y/4 =0
(=) 4x = y
Vậy x2+y2/16 >= 1/2 xy Dấu "=" xảy ra khi 4x = y.
b, Ta có:
(m+4)2> 16m
(=)m2+16m + 16 - 16m > 0
(=) m2+16 > 0
Ta có
m2>= 0 với mọi m
=> m2+16 > 0 với mọi m
Vậy (m+4)2> 16m
Chúc bạn học tốt.
Bài 1: a) Cho x>0,y>0 và m,n là hai số thực .Chứng minh rằng \(\frac{m^2}{x}+\frac{n^2}{y}\) ≥ \(\frac{\left(m+n\right)^2}{x+y}\)
b)Cho a,b,c là 3 số dương thỏa mãn abc=1.Chứng minh rằng : \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\) ≥\(\frac{3}{2}\)
a/ Bạn cứ khai triển biến đổi tương đương thôi (mà làm biếng lắm)
b/ Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)
\(VT=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(VT\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\left(x+y+z\right)\ge\frac{1}{2}.3\sqrt[3]{xyz}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
Áp dụng Buhiacopxki có \(\left(\left(\frac{m}{\sqrt{x}}\right)^2+\left(\frac{n}{\sqrt{y}}\right)^2\right)\left(\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right)\ge\left(m+n\right)^2\)
\(\RightarrowĐPCM\)
Chứng minh các bất đẳng thức sau:
a) \(x^2\:+\:\frac{y^2}{16}\:\ge\frac{1}{2}xy\)
b) \(\left(m\:+\:4\right)^2\:\ge16m\)
BÀi: :
1.CMr \(a^2+b^2-2ab\ge0\)
2.Cmr \(\dfrac{a^2+b^2}{2}\ge ab\)
3.Cmr \(a\left(a+2\right)< \left(a+1\right)^2\)
4.Cmr \(m^2+n^2+2\ge2\left(m+n\right)\)
5.Cmr \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\) với a,b>0
6.Cmr \(\forall x\in R\) đều là nghiệm của bất phương trình \(x^2-x+1>0\)
7.Cmr \(a^4+b^4+c^4+d^4\ge4abcd\)
8. Cm bất đẳng thức \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{c}{b}+\dfrac{b}{a}+\dfrac{a}{c}\)
9.Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) Chứng minh \(xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=3\)
5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)
áp dụng bđ cosy
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
=> đpcm
6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
hay với mọi x thuộc R đều là nghiệm của bpt
7.áp dụng bđt cosy
\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)
1. (a-b)2>=0
=> a2+b2-2ab>=0
2. (a-b)2>=0
=> a2+b2>=2ab
=> \(\dfrac{a^2 +b^2}{2}\ge ab\)
3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1
=> cauis trên đúng