\(\sqrt[]{53-20.\sqrt{4+\sqrt{9-4.\sqrt{2}}}}\)
\(\sqrt{53-20\sqrt{4-\sqrt{9+4\sqrt{2}}}}\)
\(\sqrt{53-20\sqrt{4-\sqrt{9+4\sqrt{2}}}}=\sqrt{53-20\sqrt{4-\sqrt{\left(2\sqrt{2}\right)^2+2.2\sqrt{2}.1+1}}}=\sqrt{53-20\sqrt{4-\sqrt{\left(2\sqrt{2}+1\right)^2}}}=\sqrt{53-20\sqrt{4-2\sqrt{2}-1}}=\sqrt{53-20\sqrt{2-2\sqrt{2}+1}}=\sqrt{53-20\sqrt{\left(\sqrt{2}-1\right)^2}}=\sqrt{53-20\left(\sqrt{2}-1\right)}=\sqrt{53-20\sqrt{2}-20}=\sqrt{25-2.5.2\sqrt{2}+8}=\sqrt{\left(5-2\sqrt{2}\right)^2}=5-2\sqrt{2}\)
\(\sqrt{53-20\sqrt{4+\sqrt{9+4\sqrt{2}}}}\)
Rút gọn căn thức
\(\sqrt{53-20\sqrt{4}+\sqrt{9-4\sqrt{2}}}\)
\(\sqrt{53-20\sqrt{4}+\sqrt{9-4\sqrt{2}}}\)
=\(\sqrt{53-40+\sqrt{\left(2\sqrt{2}-1\right)^2}}\)
=\(\sqrt{13+2\sqrt{2}-1}\)=\(\sqrt{12+2\sqrt{2}}\)
rút gọn A=\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)
B=\(53+20\sqrt{4+\sqrt{9-4\sqrt{2}}}\)
Rút gọn
\(\sqrt{2x+\sqrt{4x+1}}\) + \(\sqrt{2x-\sqrt{4x-1}}\) ( với \(\frac{1}{4}\) <x < \(\frac{1}{2}\))
\(\sqrt{53-20\sqrt{4+\sqrt{9-4\sqrt{2}}}}\)
Câu 1: Sửa lạ đề chút nhé : 4x + 1 -> 4x -1
Đặt A = \(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)
=> \(\sqrt{2}.A\)= \(\sqrt{4x-1+2\sqrt{4x-1}+1}+\sqrt{4x-1-2\sqrt{4x-1}+1}\)
= \(\sqrt{\left(\sqrt{4x-1}+1\right)^2}+\sqrt{\left(\sqrt{4x-1}-1\right)^2}\)
= \(\left|\sqrt{4x-1}+1\right|+\left|\sqrt{4x-1}-1\right|\)
Vì \(\frac{1}{4}< x< \frac{1}{2}\Rightarrow0< 4x-1< 1\Rightarrow0< \sqrt{4x-1}< 1\)
nên \(\sqrt{2}A=\)\(\sqrt{4x-1}+1+1-\sqrt{4x-1}\)=2
=> \(A=2:\sqrt{2}=\sqrt{2}\)
Câu 2. Có: \(9-4\sqrt{2}=8-2.2\sqrt{2}+1=\left(2\sqrt{2}-1\right)^2\)
=> \(\sqrt{9-4\sqrt{2}}=2\sqrt{2}-1\)
=> \(4+\sqrt{9-4\sqrt{2}}=4+2\sqrt{2}-1=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)
=> \(\sqrt{4+\sqrt{9-4\sqrt{2}}}=\sqrt{2}+1\)
=> \(53-20\sqrt{4+\sqrt{9-4\sqrt{2}}}=53-20\left(\sqrt{2}+1\right)=33-2.10\sqrt{2}=5^2-2.5.2\sqrt{2}+8=\left(5-2\sqrt{2}\right)^2\)
=> \(\sqrt{53-20\sqrt{4+\sqrt{9-4\sqrt{2}}}}=5-2\sqrt{2}\)
\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)
1)\(\sqrt{12}\)\(-\)\(\sqrt{27}\)\(+\)\(\sqrt{48}\)
2)(\(\sqrt{24}+\sqrt{20}-\sqrt{80}\))\(\div\)5
3)2\(\sqrt{27}-\sqrt{\dfrac{16}{3}}\)\(-\)\(\sqrt{48}-\)\(\sqrt{8\dfrac{1}{3}}\)
4) \(\dfrac{1}{\sqrt{5}-\sqrt{3}}\)\(-\)\(\dfrac{1}{\sqrt{5+\sqrt{3}}}\)
\(1,=2\sqrt{3}-3\sqrt{3}+4\sqrt{3}=3\sqrt{3}\\ 2,=\left(2\sqrt{6}+2\sqrt{5}-4\sqrt{5}\right):5=\dfrac{2\sqrt{6}}{5}-\dfrac{2\sqrt{5}}{5}\\ 3,=6\sqrt{3}-\dfrac{4\sqrt{3}}{3}-4\sqrt{3}-\dfrac{5\sqrt{3}}{3}=2\sqrt{3}-\dfrac{9\sqrt{3}}{3}=2\sqrt{3}-3\sqrt{3}=-\sqrt{3}\\ 4,Sửa:\dfrac{1}{\sqrt{5}-\sqrt{3}}-\dfrac{1}{\sqrt{5}+\sqrt{3}}\\ =\dfrac{\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\)
1) \(=2\sqrt{3}-3\sqrt{3}+4\sqrt{3}=3\sqrt{3}\)
2) \(=\left(2\sqrt{6}+2\sqrt{5}-4\sqrt{5}\right)=\dfrac{2\sqrt{6}}{5}+\dfrac{2\sqrt{5}}{5}-\dfrac{4\sqrt{5}}{5}\)
3) \(=6\sqrt{3}-\dfrac{4\sqrt{3}}{3}-4\sqrt{3}-\dfrac{5\sqrt{3}}{3}=2\sqrt{3}-3\sqrt{3}=-\sqrt{3}\)
4) \(=\dfrac{\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}}{5-3}=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\)
Thực hiện phép tính:
a) \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
b)\(\sqrt{24-8\sqrt{5}}+\sqrt{9+4\sqrt{5}}\)
c)\(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)
d)\(\sqrt{41+12\sqrt{5}}-\sqrt{46-6\sqrt{5}}\)
e)\(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
f)\(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
g)\(\sqrt{43+24\sqrt{3}}-\sqrt{49-\sqrt{8\sqrt{3}}}\)
h)\(\sqrt{53-20\sqrt{7}}-\sqrt{64+6\sqrt{7}}\)
bài 1: cho biểu thức sau:P =\(\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{a-9}\)( a>=9, a khác 9)
a, rút gọn P
b, tìm a để P = \(\frac{1}{3}\)
c, tìm max P
bài 2: rút gọn
A=\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)
B=\(53+20\sqrt{4+\sqrt{9-4\sqrt{2}}}\)
giải giúp mình bài này ới ạ mình đng cần gấp
Cho biểu thức
c=(căng x-2/căng x+2+căng x+2/căng x-2)nhân căng x+2/2 - 4 căng x/căng x-2
a)
\(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{a-9}\)
\(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}+\frac{\sqrt{a}\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{a-3\sqrt{a}+3+3\sqrt{a}-3a-9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{-2a-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{-2a-3}{a-9}\)
b) Để \(P=\frac{1}{3}\Rightarrow\frac{-2a-3}{a-9}=\frac{1}{3}\)
\(\Rightarrow3\left(-2a-3\right)=a-9\)
\(\Rightarrow-6a-9=a-9\)
\(\Rightarrow-6a-a=-9+9\)
\(\Rightarrow-7a=0\left(L\right)\)
Vậy ko có gt của a để P=1/3 ( mk ko chắc.....)
Rút gọn biểu thức :
a) A=\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\).
b)B=\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
c) C=\(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}.\)
a) Ta có: \(A^3=\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)^3\)
\(=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)
\(=4-3\cdot A\)
\(\Leftrightarrow A^3+3A-4=0\)
\(\Leftrightarrow A^3-A+4A-4=0\)
\(\Leftrightarrow A\left(A-1\right)\left(A+1\right)+4\left(A-1\right)=0\)
\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)
\(\Leftrightarrow A=1\)