Tìm m để pt sau vô nghiệm
(m+1)\(x^2\)-2mx+m-3=0
Đề ôn tập:
a) Biện luận theo m số nghiệm của pt: 2mx - 3 = 4x
b) Tìm m để: (m + 1)x - x - 2 + m = 0 vô nghiệm.
c) Tìm m để pt: m(x - 2) = 3(1 + x) - 2x có nghiệm
1 Cho pt:\(x^2+2mx-3m^2=0\).Tìm m để pt có 2 nghiệm \(x_1< 1< x_2\)
2 Tìm m để pt sau có 2 nghiệm cùng dấu,khi đó 2 nghiệm mang dấu gì?
a)\(x^2-2mx+5m-4=0\)
b)\(mx^2+mx+3=0\)
3 Tìm m để pt \(\left(m+1\right)x^2+mx+3=0\) có 2 nghiệm cùng lớn hơn -1
Giúp em với huhu :<,bài nào cũng đc ạ,em cảm ơn!
3.
Phương trình có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)
Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)
Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)
Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải
1. Có 2 cách giải:
C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)
\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)
\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
2.
a. Pt có 2 nghiệm cùng dấu khi:
\(\left\{{}\begin{matrix}\Delta'=m^2-5m+4\ge0\\x_1x_2=5m-4>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\\m>\dfrac{4}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m\ge4\\\dfrac{4}{5}< m\le1\end{matrix}\right.\)
Khi đó \(x_1+x_2=2m>2.\dfrac{4}{5}>0\) nên 2 nghiệm cùng dương
b. Pt có 2 nghiệm cùng dấu khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta=m^2-12m\ge0\\x_1x_2=\dfrac{3}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge12\\m\le0\end{matrix}\right.\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge12\)
Khi đó \(x_1+x_2=-1< 0\) nên 2 nghiệm cùng âm
a Tìm m để phương trình vô nghiệm: x2 - (2m - 3)x + m2 = 0.
b Tìm m để phương trình vô nghiệm: (m - 1)x2 - 2mx + m -2 = 0.
c Tìm m để phương trình vô nghiệm: (2 - m)x2 - 2(m + 1)x + 4 - m = 0
\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)
\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)
\(b,\left(m-1\right)x^2-2mx+m-2=0\)
\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)
\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)
\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)
\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)
\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)
Tìm m để phương trình:
a) x^2 – 2mx + m + 6 = 0 có hai nghiệm phân biệt.
b) mx^2 – 2mx + m + 3 = 0 vô nghiệm.
c) (m – 2)x^2 + (2m – 3)x + m +1 = 0 có nghiệm kép
a: Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(m+6\right)\)
\(=4m^2-4m-24\)
\(=4\left(m^2-m-6\right)\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow m^2-m-6>0\)
\(\Leftrightarrow\left(m-3\right)\left(m+2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>3\\m< -2\end{matrix}\right.\)
b: Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot m\cdot\left(m+3\right)\)
\(=4m^2-4m^2-12m\)
=-12m
Để phương trình vô nghiệm thì Δ<0
hay m>0
c: Ta có: \(\text{Δ}=\left(2m-3\right)^2-4\left(m-2\right)\left(m+1\right)\)
\(=4m^2-12m+9-4\left(m^2-m-2\right)\)
\(=4m^2-12m+9-4m^2+4m+8\)
\(=-8m+17\)
Để phương trình có nghiệm kép thì Δ=0
hay \(m=\dfrac{17}{8}\)
Tìm m để phương trình:
a) x^2 – 2mx + m + 6 = 0 có hai nghiệm phân biệt.
b) mx^2 – 2mx + m + 3 = 0 vô nghiệm.
c) (m – 2)x^2 + (2m – 3)x + m +1 = 0 có nghiệm kép
a, Để pt có 2 nghiệm pb khi \(\Delta>0\)
\(\Delta=\left(-2m\right)^2-4\left(m+6\right)=4m^2-4m-24>0\Leftrightarrow m< -2;m>3\)
b, Để pt trên là pt bậc 2 khi \(m\ne0\)
Để pt vô nghiệm khi \(\Delta< 0\)
\(\Delta=4m^2-4m\left(m+3\right)=4m^2-4m^2-12m< 0\Leftrightarrow-12m< 0\Leftrightarrow m>0\)
c, Để pt trên là pt bậc 2 khi \(m\ne2\)
Để pt trên có nghiệm kép \(\Delta=0\)
\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m-2\right)=4m^2-12m+9-4\left(m^2-m-2\right)\)
\(=-8m+17=0\Leftrightarrow m=\frac{17}{8}\)
Tìm m để bất phương trình sau vô nghiệm: f(x) = (m - 2) x 2 - 2mx + m + 1 > 0
f(x) = (m-2) x 2 - 2mx + m + 1 > 0 (*)
Với m = 2 thì bất phương trình (*) trở thành:
f(x) = -4x + 3 > 0 ⇔ x < 3/4
Vậy với m = 2 thì bất phương trình (*) có nghiệm x < 3/4 nên m = 2 (loại)
Với m ≠ 2 thì bất phương trình (*) vô nghiệm khi và chỉ khi
Vậy với m < -2 thì bất phương trình (*) vô nghiệm
Cho pt (m-1) \(x^2\)+ 2mx+ m-2=0
tìm m để
a) PT vô nghiệm
b) PT có nghiệm PB
c) PT có nghiệm kép
d) PT có 1 nghiệm
cho pt (m-3)x^2-2mx+m+2=0 tìm giá trị của m để pt trên có 1 nghiệm x=-2
Thay `x=-2` vào pt ta có:
\(\left(m-3\right).\left(-2\right)^2-2.m.\left(-2\right)+m+2=0\\ \Leftrightarrow\left(m-3\right).4+4.m+m+2=0\\ \Leftrightarrow4m-12+4m+m+2=0\\ \Leftrightarrow9m-10=0\\ \Leftrightarrow m=\dfrac{10}{9}\)
Vậy để pt có 1 nghiệm là `x=-2` thì `m=10/9`
1. Định m để bất phương trình m(x-1) > 2mx - 3 có vô số nghiệm
2. Tìm m để m(x-2) + m -1 < 0 bất phương trình có vô số nghiệm