Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hung Do
Xem chi tiết
Anh Quân Đỗ
27 tháng 11 2021 lúc 18:07

hello

 

Nam Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2023 lúc 19:27

a: loading...

b: Phương trình hoành độ giao điểm là:

-2x+1=x-5

=>-2x-x=-5-1

=>-3x=-6

=>x=2

Thay x=2 vào y=x-5, ta được:

\(y=2-5=-3\)

Vậy: (d1) cắt (d2) tại A(2;-3)

c: (d1): y=x-5

=>x-y-5=0

Khoảng cách từ O(0;0) đến (d1) là:

\(d\left(O;\left(d1\right)\right)=\dfrac{\left|0\cdot1+0\cdot\left(-1\right)-5\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{5}{\sqrt{2}}\)

(d2): y=-2x+1

=>y+2x-1=0

=>2x+y-1=0

Khoảng cách từ O đến (d2) là:

\(d\left(O;\left(d2\right)\right)=\dfrac{\left|0\cdot2+0\cdot1-1\right|}{\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{5}}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 6 2019 lúc 13:38

Minh Nguyệt
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 12 2020 lúc 22:08

\(y'=\dfrac{-1}{\left(x-1\right)^2}\)

Gọi tiếp tuyến qua điểm \(M\left(a;b\right)\) thuộc (C) có dạng:

\(y=\dfrac{-1}{\left(a-1\right)^2}\left(x-a\right)+\dfrac{2a-1}{a-1}\)

\(\Leftrightarrow x+\left(a-1\right)^2y-2a^2+2a-1=0\)

Áp dụng công thức khoảng cách:

\(\dfrac{\left|1+2\left(a-1\right)^2-2a^2+2a-1\right|}{\sqrt{1+\left(a-1\right)^4}}=\sqrt{2}\)

\(\Leftrightarrow\left|2a-2\right|=\sqrt{2}.\sqrt{1+\left(a-1\right)^4}\)

\(\Leftrightarrow2\left(a-1\right)^2=1+\left(a-1\right)^4\)

\(\Leftrightarrow\left[\left(a-1\right)^2-1\right]^2=0\Rightarrow a=...\)

b.

Vẫn từ công thức khoảng cách trên:

\(d=\dfrac{\left|2a-2\right|}{\sqrt{1+\left(a-1\right)^4}}=\dfrac{2\sqrt{\left(a-1\right)^2}}{\sqrt{1+\left(a-1\right)^4}}=\dfrac{2}{\sqrt{\dfrac{1}{\left(a-1\right)^2}+\left(a-1\right)^2}}\)

\(d\le\dfrac{2}{\sqrt{2\sqrt{\dfrac{\left(a-1\right)^2}{\left(a-1\right)^2}}}}=\sqrt{2}\)

Vậy \(d_{max}=\sqrt{2}\) khi tiếp tuyến trùng với các tiếp tuyến câu a

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 1 2018 lúc 11:26

B.Trâm
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 4 2021 lúc 2:04

\(y'=\dfrac{3}{\left(x+1\right)^2}\Rightarrow\) phương trình tiếp tuyến tại \(M\left(m;\dfrac{m-2}{m+1}\right)\) có dạng:

\(y=\dfrac{3}{\left(m+1\right)^2}\left(x-m\right)+\dfrac{m-2}{m+1}\)

\(\Leftrightarrow3x-\left(m+1\right)^2y+m^2-4m-2=0\)

\(P=d\left(I;d\right)=\dfrac{\left|6m+6\right|}{\sqrt{9+\left(m+1\right)^4}}=\dfrac{6}{\sqrt{\left(m+1\right)^2+\dfrac{9}{\left(m+1\right)^2}}}\le\dfrac{6}{\sqrt{2\sqrt{\dfrac{9\left(m+1\right)^2}{\left(m+1\right)^2}}}}=\sqrt{6}\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left(m+1\right)^2=\dfrac{9}{\left(m+1\right)^2}\Leftrightarrow\left(m+1\right)^2=3\Rightarrow m=\) ... lại xấu :)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 10 2017 lúc 2:45

+ Ta có  y ' = 3 x + 1 2

+ Gọi  M x 0 ; 2 x 0 - 1 x 0 + 1 ∈ C ,   x 0 ≠ - 1 .

Phương trình tiếp tuyến tại M  là

+ Dấu  xảy ra khi và chỉ khi

Tung độ này gần với giá trị e nhất trong các đáp án.

Chọn C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 4 2017 lúc 13:09

+ Đồ thi hàm số đã cho co TCĐ là : x= -1 và TCN là y= 1; tâm đối xứng- giao của 2 đườg tiệm cận có tọa độ là I ( -1; 1)

 Gọi  M x 0 ; x 0 - 2 x 0 + 1 ∈ C ,   x 0 ≠ - 1 ,   I ( - 1 ; 1 )

+  Phương trình tiếp tuyến tại M có dạng

+ Giao điểm của ∆   với tiệm cận đứng là  A - 1 ; x 0 - 5 x 0 + 1

+ Giao điểm của  ∆   với tiệm cận ngang là  B( 2x0+1; 1).

Ta có 

Bán kính đường tròn ngoại tiếp tam giác IAB là S=p.r, suy ra

Suy ra,

Chọn  D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 12 2017 lúc 3:36

+ Hàm số đã cho có TCĐ là x=1 và TCN là y= 1 nên tâm đối xứng- là giao điểm của 2 đường tiệm cận có tọa độ là I (1; 1)

+ Ta có 

Gọi 

+ Phương trình tiếp tuyến tại M  có dạng

+

+ Dấu " = " xảy ra khi và chỉ khi

 

Tung độ này gần với giá trị  nhất trong các đáp án.

Chọn D.