Cho hàm số y = 2 x - 1 x + 1 có đồ thị (C) . Biết khoảng cách từ I(-1; 2) đến tiếp tuyến của (C) tại M là lớn nhất thì tung độ của điểm M nằm ở góc phần tư thứ hai, gần giá trị nào nhất?
A.3e
B.2e
C.e
D.4e
Cho hàm số y = x x - 1 có đồ thị (C) .Gọi ∆ là tiếp tuyến tại điểm M(x0; y0) (với x0 > 0) thuộc đồ thị (C). Để khoảng cách từ tâm đối xứng I của đồ thị (C) đến tiếp tuyến là lớn nhất thì tung độ của điểm M gần giá trị nào nhất?
A. 7 π 2
B. 3 π 2
C. 5 π 2
D. π 2
Cho hàm số y = 2 x + 1 x - 1 có đồ thị (C) . Gọi I là giao điểm của hai tiệm cận. Tiếp tuyến của (C) cắt 2 tiệm cận tại A và B sao cho chu vi tam giác IAB đạt giá trị nhỏ nhất. Khoảng cách lớn nhất từ gốc tọa độ đến tiếp tuyến ∆ gần giá trị nào nhất?
A. 6.
B. 4.
C. 3.
D. 5.
Cho hàm số y= x4- 2mx2+m (1) với m là tham số thực. Gọi (C) là đồ thị hàm số (1); d là tiếp tuyến của (C) tại điểm có hoành độ bằng 1. Tìm m để khoảng cách từ điểm B( ¾; 1) đến đường thẳng d đạt giá trị lớn nhất?
A. 0
B. 1
C. 2
D. 3
Tọa độ điểm M thuộc đồ thị (C) của hàm số sao cho khoảng cách từ điểm M đến tiếp tuyến của (C) tại M là lớn
nhất là:
A.
B.
C.
D.
Cho hàm số y = 2 x - 3 x - 2 có đồ thị (C) . Biết tiếp tuyến tại M của (C) cắt hai tiệm cận của (C) tại A; B sao cho AB ngắn nhất. Khi đó, độ dài lớn nhất của vectơ O M → gần giá trị nào nhất ?
A. 7.
B. 5.
C. 6.
D. 4.
Cho hàm số y = x + 2 x + 1 (C). Gọi d là khoảng cách từ giao điểm hai tiệm cận của đồ thị đến một tiếp tuyến của (C). Giá trị lớn nhất d có thể đạt được là
A. 3 3
B. 3
C. 2
D. 2 2
Cho hàm số y = x + 1 x - 2 (C). Gọi d là khoảng cách từ giao điểm của hai đường tiệm cận của đồ thị đến một tiếp tuyến của (C). Giá trị lớn nhất mà d có thể đạt được là:
A.
B. .
C. .
D. .
Cho hàm số y = x + 2 x + 1 có đồ thị là (C). Gọi d là khoảng cách từ giao điểm 2 tiệm cận của (C) đến một tiếp tuyến bất kỳ của (C). Giá trị lớn nhất d có thể đạt được là:
A. .
B. .
C. .
D. .