Cho ΔABC nhọn, đường cao BM, CN, Gọi H là giao điểm của BM và CN; E là giao điểm của AH, BC. C/m:
a tứ giác ANEC nội tiếp đtron
b tứ giác AMEB nội tiếp dtron
c tứ giác BNHE noọi tiếp đtron
d tứ giác MHEC nội tiếp đtron
e NH là phân giác ^MNE
CHo Tam giác ABC có 3 góc nhọn. Đường cao AH, trung tuyến BM, phân giác CN. Gọi P,Q,R là giao điểm của AH và BM; BM và CN; CN và AH. CM nếu P,Q,R tạo thành tam giác thì tam giác đó không đều
Cho tam giác nhọn ABC có đường cao BM và CN. cho BM giao CN tại H. cho AH giao BC tại K. I,O là trung điểm AH và BC. chứng minh NIM + NOM=180
\(\Delta BMC:\widehat{BMC}=90^0;OB=OC\Rightarrow OM=OB=OC\Rightarrow\widehat{OMC}=\widehat{ACB}\left(1\right)\)(do tam giác OMC cân)
\(\Delta AMH:\widehat{AMH}=90^0;AI=HI\Rightarrow AI=HI=IM\Rightarrow\widehat{IAM}=\widehat{IMA}\left(2\right)\)(do tam giác IAM cân)
\(\left(1\right),\left(2\right)\Rightarrow\widehat{IMA}+\widehat{OMC}=\widehat{IAM}+\widehat{OCM}=90^0\Rightarrow\widehat{IMO}=90^0\)
Tương tự thì \(\widehat{INO}=90^0\)
Suy ra \(\widehat{NIM}+\widehat{NOM}=180^0\left(DPCM\right)\)
Cho tam giác nhọn abc. Đường cao bd và ce. Đường phân giác bm của tam giác abd và đường phân giác cn của tam giác ace. Ce giao bm tại h, cn giao bd tại k.
a) Chứng minh cn vuông góc với bm
b) chứng minh nmkh là hình thoi
Cho tam giác ABC cân tại A có BM và CN là hai đường trung tuyến.
a) Chứng minh rằng BM = CN
b) Gọi I là giao điểm của BM và CN, đường thẳng AI cắt BC tại H. Chứng minh H là trung điểm của BC
Tham khảo:
a) Vì tam giác ABC cân tại A theo giả thiết. BM và CN là 2 đường trung tuyến nên M, N là 2 trung điểm của AC, AB.
Vì AB = AC (tính chất tam giác cân)
\( \Rightarrow \dfrac{{AB}}{2} = \dfrac{{AC}}{2} = AN = AM\)
Xét tam giác AMB và tam giác ANC ta có :
AM = AN (cmt)
AB = AC
Góc A chung
\( \Rightarrow \Delta AMB =\Delta ANC\)
\( \Rightarrow BM = CN\) ( 2 cạnh tương ứng )
b) Vì BM và CN là các đường trung tuyến
Mà I là giao điểm của BM và CN
\( \Rightarrow \) I là trọng tâm của tam giác ABC
\( \Rightarrow \) AI là đường trung tuyến của tam giác ABC hay AH đường là trung tuyến của tam giác ABC
\( \Rightarrow \) H là trung điểm của BC
Cho ΔABC cân tại A. Vẽ hai đường trung tuyến BM và CN cắt nhau tại I.
a) Chứng minh: ΔABM = ΔACN
b) Gọi H là giao điểm của AI và BC. Chứng minh: AH⊥BC
a: Xét ΔABM và ΔACN có
AB=AC
góc A chung
AM=AN
=>ΔABM=ΔACN
b: Xét ΔABC có
BM,CN là trung tuyến
BM cắt CN tại I
=>I là trọng tam
=>H là trung điểm của BC
ΔABC cân tại A
mà AH là trung tuyến
nên AH vuông góc BC
Cho △ABC có 3 góc nhọn nội tiếp (O) (AB<AC). Các đường cao BM và CN cắt nhau tại H. Gọi P là giao điểm của MN và BC. Đường thẳng AP cắt (O) tại K,Gọi I là trung điểm của BC.Chứng minh H,K,I thẳng hàng.thank m,n
ΔPKN đồng dạng với ΔPMA
=>góc PKN=góc PMH
=>AKNM nội tiếp
mà góc ANH=góc AMH=90 độ
nên ANHM nội tiếp đường tròn đường kính AH
=>góc AKH=góc ANH
=>AK vuông góc KH
Kẻ đường kính AI' của (O)
=>I'K vuông góc AK
=>K,H,I' thẳng hàng
AC vuông góc CI' AB vuông góc BI'
=>CI'//BH và BI'//CH
=>BHCI' là hình bình hành
=>K,H,I thẳng hàng
Cho tam giác ABC, các đường trung tuyến BM và CN. Trên cạnh BC lấy điểm D và E sao cho BD=DE=EC. Gọi H là giao điểm của AD và BM, gọi K là giao điểm của AE và CN. Chứng minh rằng ba đường thẳng MK,NH và BC đồng quy.
Cho tam giác ABC có AB = AC, BM và CN là hai đường trung tuyến.
a) Chứng minh: BM=CN
b) Gọi I là giao điểm của BM và CN, đường thẳng AI cắt BC tại H. Chứng minh H là trung điểm của BC.
c) Hãy phát biểu kết quả câu a) dưới dạng một định lí
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{BAM}\) chung
AM=AN
Do đó: ΔABM=ΔACN
Suy ra: BM=CN
b: Xét ΔNBC và ΔMCB có
NB=MC
BC chung
NC=MB
Do đó: ΔNBC=ΔMCB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
=>ΔIBC cân tại I
=>IB=IC
mà AB=AC
nên AI là đường trung trực của BC
=>H là trung điểm của BC