Cho tam giác ABC có 3 góc nhọn (AB<AC). Vẽ đường tròn tâm O đường kính BC cắt AB và AC lần lượt tại N, M. Gọi H là giao điểm của BM vfa CN; AH cắt BC tại K.
a) Chứng minh tứ giác ANKC nội tiếp
b) Gọi I là giao điểm của NK và BM. Chứng minh: IH.NM=IN.MH
c) Chứng minh tứ giác NKOM nội tiếp
cho tam giác nhọn ABC có AB < AC . Gọi O là trung điểm của BC . Kẻ các đường cao BM và CN của tam giác ABC . Tia phân giác của góc BAC cắt tia phân giác của góc MON tại D . Gọi E là giao điểm của AD và BC . CMR tứ giác BNDE nội tiếp
cho nửa đường tròn (O) đường kính AB. Điểm M nằm trên nửa đtron (\(M\ne B\)
tiếp tuyến tại M cắt tiếp tuyến tại A và B của đường trong (O) lần lượt tại C và D.
a. CMR tứ giác ACMO nội tiếp
b. CMR \(\widehat{CAM}=\widehat{ODM}\)
C. Gọi E là giao điểm của AM và BD; F là giao điểm của AC và BM. P là giao điểm của BA và DC. CM: E; F; P thẳng hàng
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Hai đường cao AD và CE cắt nhau tại H. Tia BO cắt (O) tại điểm thứ hai M. I là giao điểm của BM và DE
c) Chứng minh tứ giác CMID là tứ giác nội tiếp
cho tam giác ABC nhọn nội tiếp đường tròn o . H là giao điểm ba đường cao AD,BE,CF a) Chứng minh tứ giác BFEC và tứ giác AFHE nội tiếp b)Vẽ đường kính AK .Chứng minh AK.AD=AB.AC c)gọi N là giao điểm của FE và OK ,Chứng minh tứ giác NHDK nội tiếp
cho tam giác ABC nhọn nội tiếp đường tròn o . H là giao điểm ba đường cao AD,BE,CF a) Chứng minh tứ giác BFEC và tứ giác AFHE nội tiếp b)Vẽ đường kính AK .Chứng minh AK.AD=AB.AC c)gọi N là giao điểm của FE và OK ,Chứng minh tứ giác NHDK nội tiếp
Cho tam giác ABC nhọn (AB < AC) . Đường tròn (O;R) đường kính BC cắt AB, AC lần lượt tại E, F. Gọi H là giao điểm của BF và CE; AH cắt BC tại D. I a) Chứng minh: tứ giác AEHF nội tiếp và AD L BC. b) Chứng minh: tứ giác BEHD nội tiếp c) Chứng minh: tứ giác AEDC nội tiếp d) Chứng minh: DA là tia phân giác của góc EDF. f) Chứng minh: AE.AB=AH.AD=AF k) Chứng minh: DA.DH=DB.DC
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Hai đường cao AD và CE cắt nhau tại H. Tia BO cắt (O) tại điểm thứ hai M. I là giao điểm của BM và DE
a) Chứng minh tứ giác AEDC là tứ giác nội tiếp
cho tam giác ABC vuông tại A đường cao AH,HB=20 cm;HC=45cm vẽ đường tròn tâm A bán kính AH kẻ tiếp tuyến BM ,CN với đường tròn a,chứng minh tứ giác AMBH nội tiếp b,Tính diện tích tứ giác BMNC c,gọi K là giao điểm của CN và HA tính KA