a: Xét ΔABM và ΔACN có
AB=AC
góc A chung
AM=AN
=>ΔABM=ΔACN
b: Xét ΔABC có
BM,CN là trung tuyến
BM cắt CN tại I
=>I là trọng tam
=>H là trung điểm của BC
ΔABC cân tại A
mà AH là trung tuyến
nên AH vuông góc BC
a: Xét ΔABM và ΔACN có
AB=AC
góc A chung
AM=AN
=>ΔABM=ΔACN
b: Xét ΔABC có
BM,CN là trung tuyến
BM cắt CN tại I
=>I là trọng tam
=>H là trung điểm của BC
ΔABC cân tại A
mà AH là trung tuyến
nên AH vuông góc BC
Cho ΔABC cân tại A và hai đường trung tuyến BM, CN cắt nhau tại I.
a) Chứng minh ΔBNC = ΔCMB. Từ đó suy ra ΔBIC cân tại I.
b) Gọi K là trung điểm của BC. Chứng minh A, I, K thẳng hàng
c) Chứng minh BC < 4.IM
làm gấp hộ mình với ạ huhu
Cho ∆ABC cân tại A và hai đường trung tuyến BM, CN cắt nhau tại K.
a) Chứng minh ∆BNC = ∆CMB.
b) Chứng minh AK ^ BC.
c) Gọi H là giao điểm của AK và BC. Tính AH biết AB = 5cm, BC = 6cm.
Cho tam giác ABC cân tại A vẽ hai đường trung tuyến BM và CN cắt nhau tại G
1 chứng minh BM=CN
2 chứng minh AG là tia phân giác của góc BAC
3 chứng minh MN song song với BC
4 gọi H là giao điểm của AG và BC chứng minh AH vuông góc với BC
Cho tam giác ABC cân tại A vẽ hai đường trung tuyến BM
và CN cắt nhau tại G
Chứng minh BM C N
Chứng minh AG là tia phân giác của góc BAC
Chứng minh MN song song BC
Gọi H là giao điểm của AG và BC chứng minhAH vuông góc với BC
Cho ABC cân tại A, kẻ đường cao AH (H BC).
a. Chứng minh:v Cho ABC cân tại A, kẻ đường cao AH (H BC).
b. Kẻ đường trung tuyến BM. Trên tia BM lấy điểm E sao cho BM = ME. Chứng minh: CE // AB.
c. Tia EC cắt AH tại K. Gọi G là giao điểm của BM và AH. Chứng minh: 3GH + HC > CK
mik cần gấp , giúp mik với
Cho ∆ABC cân tại A, kẻ đường cao AH (H ∈ BC).
a. Chứng minh: ∆ABH=∆ACH.
b. Kẻ đường trung tuyến BM. Trên tia BM lấy điểm E sao cho BM=ME. Chứng minh: CE//AB.
c. Tia EC cắt AH tại K. Gọi G là giao điểm của BM và AH. Chứng minh: 3GH + HC > CK.
Cho ΔABC cân tại A. Vẽ AH vuông góc BC tại H
a) Chứng minh Δ AHB = ΔAHC
b) Gọi I là trung điểm của HC. Qua I vẽ đường thẳng vuông góc với HC, đường thẳng này cắt AC tại D. Chứng minh ΔDHC cân tại D
c) Gọi G là giao điểm của AH và BD, M là trung điểm AB. Chứng minh GM=\(\dfrac{1}{2}\) GB
Cho tam giác ABC cân tại A . Các đường phân giác của BD và CE cắt nhau tại I.a) Chứng minh: AD=AE. b) Chứng minh: tam giác BIE= tam giác CID. c) Chứng minh: tam giác BIC cân. d) Cho biết AB=AC=5cm, BC=6cm. Gọi H là giao điểm của AI với BC. Tính AH
Cho ΔABC cân ở A. Trên cạnh BC lấy điểm M, N sao cho BM = CN < BC/2. Kẻ ME vuông góc với AB, NF vuông góc với AC (E ϵ AB, F ϵ AC), EM cắt FN tại H. Chứng minh:
a) ΔABM = ΔACN.
b) Gọi D là trung điểm của MN. Chứng minh AD là tia phân giác của góc BAC.
c) EF // BC.
d) Chứng mình: A, D, H thẳng hàng.