GIẢI PHƯƠNG TRÌNH : (x+1/2022 ) + (x+3/2020) + (x+5/2018) + (x+7/2016) = -4
Giải phương trình sau: \(\dfrac{x-1}{2023}+\dfrac{x-2}{2022}=\dfrac{x-3}{2021}+\dfrac{x-4}{2020}\)
\(\dfrac{x-1}{2023}+\dfrac{x-2}{2022}=\dfrac{x-3}{2021}+\dfrac{x-4}{2020}\)
`<=>(x-1)/2023-1+(x-2)/2022-1=(x-3)/2021-1+(x-4)/2020-1`
`<=>(x-2024)/2023+(x-2024)/2022=(x-2024)/2021+(x-2024)/2020`
`<=>(x-2024)(1/2023+1/2022-1/2021-1/2020)=0`
`<=>x-2024=0(1/2023+1/2022-1/2021-1/2020>0)`
`<=>x=2024`
=>\(\left(\dfrac{x-1}{2023}-1\right)+\left(\dfrac{x-2}{2022}-1\right)=\left(\dfrac{x-3}{2021}-1\right)+\left(\dfrac{x-4}{2020}-1\right)\)
=>x-2024=0
=>x=2024
\(\dfrac{x-1}{2023}+\dfrac{x-2}{2022}=\dfrac{x-3}{2021}+\dfrac{x-4}{2020}\)
⇔\(\dfrac{x-1}{2023}-1+\dfrac{x-2}{2022}-1=\dfrac{x-3}{2021}-1+\dfrac{x-4}{2020}\)
⇔\(\dfrac{x-1}{2023}-\dfrac{2023}{2023}+\dfrac{x-2}{2022}-\dfrac{2022}{2022}=\dfrac{x-3}{2021}-\dfrac{2021}{2021}+\dfrac{x-4}{2020}-\dfrac{2020}{2020}\)
⇔\(\dfrac{x-2024}{2023}+\dfrac{x-2024}{2022}=\dfrac{x-2024}{2021}+\dfrac{x-2024}{2020}\)
⇔\(\dfrac{x-2024}{2023}+\dfrac{x-2024}{2022}-\dfrac{x-2024}{2021}-\dfrac{x-2024}{2020}=0\)
⇔\(\left(x-2024\right)\left(\dfrac{1}{2023}+\dfrac{1}{2022}-\dfrac{1}{2021}-\dfrac{1}{2020}\ne0\right)\)
⇔\(x-2024=0\)
⇔\(x=2024\)
Giải phương trình .x-2/2017+x-3/2018=x-4/2019+x-5/2020
\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)
<=> \(\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)
<=> \(\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
<=> \(\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
<=> x + 2015 = 0 ( vì \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))
<=> x = - 2015
Vậy x = -2015.
Giải phương trình :
\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)
\(\Rightarrow\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)
\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
\(\Rightarrow\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
Mà \(\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)>0\)
\(\Rightarrow x+2015=0\)
\(\Rightarrow x=-2015\)
\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)
\(\Rightarrow\left(\frac{x-2}{2017}+1\right)+\left(\frac{x-3}{2018}+1\right)=\left(\frac{x-4}{2019}+1\right)+\left(\frac{x-5}{2020}+1\right)\)
\(\Rightarrow\frac{x-2+2017}{2017}+\frac{x-3+2018}{2018}=\frac{x-4+2019}{2019}+\frac{x-5+2020}{2020}\)
\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}=\frac{x+2015}{2019}+\frac{x+2015}{2020}\)
\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
\(\Rightarrow\left(x+15\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
\(\Rightarrow x+2015=0\)
\(\Rightarrow x=-2015\)
Vậy x = - 2015
giải các phương trình:
\(\dfrac{1}{x+1}-\dfrac{5}{x-2}=\dfrac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{5x-2}{4-x^2}\)
\(\dfrac{x+2}{2020}+\dfrac{x+4}{2018}=\dfrac{x+6}{2016}+\dfrac{x+8}{2014}\)
Giúp tớ với, thầy réo tớ kinh lắm rồi!
\(\dfrac{1}{x+1}\)-\(\dfrac{5}{x-2}\)=\(\dfrac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\)\(\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}\)-\(\dfrac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\)=\(\dfrac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\)x-2-5(x+1)=15
\(\Leftrightarrow\) x-2-5x-5=15
\(\Leftrightarrow\)x-5x=15+2+5
\(\Leftrightarrow\)-4x=22
\(\Leftrightarrow\)x=-\(\dfrac{11}{2}\)
vậy
Giải phương trình nghiệm nguyên
a) \(x^2+6x+17^{91}=2016^{2020}\)
b) \(x^2+2017^{2019}=2016\left(y-1\right)^2\)
c) \(x^2-2x=2017^{2017}\)
d) \(x^2+4x=2018^{10}\)
Lời giải:
a.
PT $\Leftrightarrow (x+3)^2=2016^{2020}-17^{91}+9$
Ta thấy: $2016^{2020}-17^{91}+9\equiv 0-(-1)^{91}+0\equiv -1\equiv 2\pmod 3$
Mà 1 scp thì chia $3$ chỉ dư $0$ hoặc $1$ nên pt vô nghiệm.
b.
$x^2=2016(y-1)^2-2017^{2019}\equiv 0-1^{2019}\equiv 3\pmod 4$
Mà 1 scp chia $4$ chỉ dư $0$ hoặc $1$ nên vô lý.
Vậy pt vô nghiệm.
c.
$(x-1)^2=2017^{2017}+1\equiv 1^{2017}+1\equiv 2\pmod 4$
Mà 1 scp khi chia cho $4$ chỉ dư $0$ hoặc $1$ nên vô lý
Vậy pt vô nghiệm
d.
$(x+2)^2=2018^{10}+4\equiv (-1)^{10}+1\equiv 2\pmod 3$
Mà 1 scp khi chia $3$ dư $0$ hoặc $1$ nên vô lý
Vậy pt vô nghiệm.
Giải phương trình
\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)
Ta có:\(\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)
\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
\(\Rightarrow\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
Mà \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}>0\)
\(\Rightarrow x+2015=0\Rightarrow x=-2015\)
\(S=\left\{-2015\right\}\)
gợi ý
2017-x-2=2018-3-x=2019-4-x=2020-5-x
\(\frac{x-2}{2017}+\frac{x-3}{2018}=\frac{x-4}{2019}+\frac{x-5}{2020}\)
\(\Leftrightarrow\left(\frac{x-2}{2017}+1\right)+\left(\frac{x-3}{2018}+1\right)=\left(\frac{x-4}{2019}+1\right)+\left(\frac{x-5}{2020}+1\right)\)
\(\Leftrightarrow\frac{x-2+2017}{2017}+\frac{x-3+2018}{2018}=\frac{x-4+2019}{2019}+\frac{x-5+2020}{2020}\)
\(\Leftrightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
\(\Leftrightarrow x+2015=0\)
\(\Leftrightarrow x=-2015\)
Tìm x biết :
\(\frac{x-1}{2020}+\frac{x-3}{2018}+\frac{x-5}{2016}+\frac{x-7}{2014}=4\)
helpppppppppppppppp
Bài làm:
Pt <=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-3}{2018}-1\right)+\left(\frac{x-5}{2016}-1\right)+\left(\frac{x-7}{2014}-1\right)=4-4\)
\(\Leftrightarrow\frac{x-2021}{2020}+\frac{x-2021}{2018}+\frac{x-2021}{2016}+\frac{x-2021}{2014}=0\)
\(\Rightarrow x-2021=0\Rightarrow x=2021\)
Ta có :\(\frac{x-1}{2020}+\frac{x-3}{2018}+\frac{x-5}{2016}+\frac{x-7}{2014}=4\)
=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-3}{2018}-1\right)+\left(\frac{x-5}{2016}-1\right)+\left(\frac{x-7}{2014}-1\right)=0\)
=> \(\frac{x-2021}{2020}+\frac{x-2021}{2018}+\frac{x-2021}{2016}+\frac{x-2021}{2014}=0\)
=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2018}+\frac{1}{2016}+\frac{1}{2014}\right)=0\)
Vì \(\frac{1}{2020}+\frac{1}{2018}+\frac{1}{2016}+\frac{1}{2014}\ne0\)
=> x - 2021 = 0
=> x = 2021
Vậy x = 2021
giải phương trình (×+1)/2020+(×-1)/2018=(×+5)/2024+(x-5)/2014
\(\dfrac{x+1}{2020}+\dfrac{x-1}{2018}=\dfrac{x+5}{2024}+\dfrac{x-5}{2014}\)
\(\Leftrightarrow\left(\dfrac{x+1}{2020}-1\right)+\left(\dfrac{x-1}{2018}-1\right)-\left(\dfrac{x+5}{2024}-1\right)-\left(\dfrac{x-5}{2014}-1\right)=0\)
\(\Leftrightarrow\dfrac{x-2019}{2020}+\dfrac{x-2019}{2018}-\dfrac{x-2019}{2024}-\dfrac{x-2019}{2014}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\dfrac{1}{2020}+\dfrac{1}{2018}-\dfrac{1}{2024}-\dfrac{1}{2014}\right)=0\)
\(\Leftrightarrow x-2019=0\\ \Leftrightarrow x=2019\)
Giải phương trình:
x+1/2018 + x+2/2017 + x+3/2016 + x+4/2015 + x+2043/6 =0
Giải phương trình :
a) \(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x+5}{2016}+\frac{x+6}{2015}\)
b) \(\frac{2-x}{2004}-1=\frac{1-x}{2005}-\frac{x}{2006}\)
a, Làm
\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x+5}{2016}+\frac{x+6}{2015}\)
<=>\(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2016}+\frac{x+2021}{2015}\)
<=>\(\left(x+2021\right)\left(\frac{1}{2020}+\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
<=> x+2021=0
<=> x=-2021
Kl:......................
b, Làmmmmm
\(\frac{2-x}{2004}-1=\frac{1-x}{2005}-\frac{x}{2006}\)
<=> \(\frac{2006-x}{2004}=\frac{2006-x}{2005}+\frac{2006-x}{2006}\)
<=> \(\left(2006-x\right)\left(\frac{1}{2004}-\frac{1}{2005}-\frac{1}{2006}\right)=0< =>2006-x=0\)
<=> x=2006
Kl:..............