Tìm GTNN của biểu thức :
M = \(\left(x-1\right)\cdot\left(x-3\right)\cdot\left(x^2-4\cdot x-5\right)\)
Tìm giá trị của biểu thức : \(C=\frac{4x^4+1}{4\left(x+1\right)^2+1}\cdot\frac{4\left(x+2\right)^4+1}{4\left(x+3\right)^4+1}\cdot\cdot\cdot\frac{4\left(x+10\right)^4+1}{4\left(x+11\right)^4+1}\)
1:tìm x
a; \(3x+\left|x-2\right|=8\)
b; \(5-\left|x-1\right|=4\)
2:tìm x
\(5\cdot\left(x-2\right)-4\cdot\left(1-3x\right)=\left|3-7\right|+2\cdot\left(1+2x\right)\)
3: tìm x
\(\left(x-2\right)\cdot\left(2x+1\right)-3\cdot\left(x+2\right)=4-5\cdot\left(1-x\right)\)
4:tìm x
\(1\dfrac{1}{2}\cdot\left(x-2\right)-\dfrac{x-5}{3}=3\dfrac{1}{3}\cdot\left(1-2x\right)-\dfrac{5\cdot\left(x+1\right)}{6}\)
5: tìm x
\(\left(x-3\right)\cdot\left(1-x\right)+\left(x-2\right)^2=\left(1-x\right)^2-2\cdot\left(1+x\right)\)
6: tìm x
\(\left(2x-1\right)^2-3\cdot\left(x+2\right)^2=4\cdot\left(x-2\right)-5\cdot\left(x-1\right)^2\)
1. a, 3x + |x - 2| = 8
<=> |x - 2| = 8 - 3x
Xét 2 TH :
TH1: x - 2 = 8 - 3x
<=> x + 3x = 8 + 2
<=> 4x = 10
<=> x = \(\dfrac{5}{2}\) (thỏa mãn)
TH2: x - 2 = -(8 - 3x)
<=> x - 2 = -8 + 3x
<=> -2 + 8 = 3x - x
<=> 6 = 2x
<=> x = 3 (thỏa mãn)
b, 5 - |x - 1| = 4
<=> |x - 1| = 1
<=> \(\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\) (thỏa mãn)
@Nguyễn Hoàng Vũ
2. 5.(x - 2) - 4.(1 - 3x) = |3 - 7| + 2.(1 + 2x)
<=> 5x - 10 - 4 + 12x = 4 + 2 + 4x
<=> 17x - 14 = 6 + 4x
<=> 17x - 4x = 6 + 14
<=> 13x = 20
<=> x = \(\dfrac{20}{13}\) (thỏa mãn)
@Nguyễn Hoàng Vũ
4. 1\(\dfrac{1}{2}\).(x - 2) - \(\dfrac{x-5}{3}\) = 3\(\dfrac{1}{3}\).(1 - 2x) - \(\dfrac{5.\left(x+1\right)}{6}\)
<=> \(\dfrac{3}{2}\).(x - 2) - \(\dfrac{x-5}{3}\) = \(\dfrac{10}{3}\).(1 - 2x) - \(\dfrac{5x+5}{6}\)
<=> \(\dfrac{3}{2}x-3-\dfrac{x}{3}+\dfrac{5}{3}=\dfrac{10}{3}-\dfrac{20}{3}x-\dfrac{5x}{6}-\dfrac{5}{6}\)
<=> \(\dfrac{3}{2}x-\dfrac{x}{3}+\dfrac{20}{3}x-\dfrac{5x}{6}=\dfrac{10}{3}-\dfrac{5}{6}-3+\dfrac{5}{3}\)
<=> 7x = \(\dfrac{7}{6}\)
<=> x = \(\dfrac{1}{6}\)
@Nguyễn Hoàng Vũ
Tìm x:
1, \(\left(x-5\right)\cdot\left(x+5\right)-\left(x+3\right)^2=2x-3\)
2,\(\left(2x+3\right)^2+\left(x-1\right)\cdot\left(x+1\right)=5\cdot\left(x+2\right)^2\)
3, \(\left(x-4\right)^3-\left(x-5\right)\cdot\left(x^2+5x+25\right)=\left(x+2\right)\cdot\left(x^2-2x+4\right)-\left(x+4\right)^3\)
1.\(\left(x-5\right).\left(x+5\right)-\left(x+3\right)^2=2x-3\)
\(\Leftrightarrow x^2-25-\left(x^2+6x+9\right)=2x-3\)
\(\Leftrightarrow x^2-25-x^2-6x-9=2x-3\)
\(\Leftrightarrow x^2-25-x^2-6x-9-2x+3=0\)
\(\Leftrightarrow-8x-31=0\)
\(\Leftrightarrow x=\dfrac{-31}{8}\)
\(\left(x-4\right)^3-\left(x-5\right)\left(x^2+5x+25\right)=\left(x+2\right)\left(x^2-2x+4\right)-\left(x+4\right)^3\)
\(\Leftrightarrow\left(x-4\right)^3-\left(x^3-5^3\right)=\left(x^3+2^3\right)-\left(x+4\right)^3\)
\(\Leftrightarrow\left(x-4\right)^3-x^3+5^3=x^3+2^3-\left(x+4\right)^3\)
\(\Leftrightarrow\left(x^3-12x^2+48x-64\right)-x^3+5^3=x^3+2^3-\left(x^3+12x^2+48x+64\right)\)
\(\Leftrightarrow x^3-12x^2+48x-64-x^3+5^3=x^3+2^3-x^3-12x^2-48x-64\)
\(\Leftrightarrow-12x^2+48x-64+5^3=2^3-12x^2-48x-64\)
\(\Leftrightarrow-12x^2+48x-61=-12x^2-48x-56\)
\(\Leftrightarrow96x=-117\)
\(\Leftrightarrow x=\dfrac{-117}{96}=\dfrac{-39}{32}\)
2. \(\left(2x+3\right)^2+\left(x-1\right)\left(x+1\right)=5\left(x+2\right)^2\)
\(\Leftrightarrow4x^2+12x+9+x^2-1=5\left(x^2+4x+4\right)\)
\(\Leftrightarrow4x^2+12x+9+x^2-1=5x^2+20x+20\)
\(\Leftrightarrow4x^2+x^2-5x^2+12x-20x=20-9+1\)
\(\Leftrightarrow-8x=12\)
\(\Leftrightarrow x=\dfrac{-12}{8}=\dfrac{-3}{2}\)
Thu gọn biểu thức
1,\(\left(x-2\right)^3-\left(2x+3\right)^3-7\cdot\left(1-x\right)^3\)
2,\(\left(x+5\right)\cdot\left(x^2-5x+25\right)-\left(x-2\right)\cdot\left(x^2+2x+4\right)\)
3, \(\left(2x-3\right)\cdot\left(4x^2+6x+9\right)-\left(2x+1\right)^3\)
1: \(=x^3-6x^2+12x-8-8x^3-36x^2-54x-27+7\left(x-1\right)^3\)
\(=-7x^3-42x^2-42x-35+7x^3-21x^2+21x-7\)
\(=-63x^2-21x-42\)
2: \(=x^3+125-\left(x^3-8\right)=125+8=133\)
3: \(=8x^3-27-8x^3-12x^2-6x-1=-12x^2-6x-28\)
rút gọn biểu thức sau bằng cách nhanh nhất
A = \(\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
B = \(\left(3x^3+3x+1\right)\cdot\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
C = \(\left(2-6x\right)^2+\left(2-5x\right)^2+2\cdot\left(6x-2\right)\cdot\left(2-5x\right)\)
D = \(5\cdot\left(3x-1\right)^2+4\cdot\left(5x+1\right)^2-12\cdot\left(5x-2\right)\left(5x+2\right)\)
E = \(\left(3x-1\right)^2+\left(2x+4\right)\cdot\left(1-3x\right)+\left(x+2\right)^2\)
G = \(\left(x-1\right)^3+4\cdot\left(x+1\right)\cdot\left(1-x\right)+3\cdot\left(x-1\right)\cdot\left(x^2+x+1\right)\)
\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)
\(=2a^2.2b^2-4a^2b^2=0\)
\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)
\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)
\(=\left[4-11x\right]^2\)
\(=16-88x+121x^2\)
chúc bn học tốt
Chứng minh biểu thức không phụ thuộc x :
1, \(\left(3x-1\right)^2-2\cdot\left(2x-3\right)\cdot\left(2x+3\right)-\left(x-3\right)^2\)
2, \(\left(3x+2\right)^3-\left(3x-2\right)^3-3\cdot\left(6x-1\right)\cdot\left(6x+1\right)\)
3, \(\left(3x-5\right)^2+3\cdot\left(x+1\right)\cdot\left(x-1\right)-\left(4x-3\right)^2+\left(2x+2\right)\cdot\left(2x+1\right)\)
TÌM x
\(\left(\left(\frac{3}{4}\cdot x+5\right)-\left(\frac{2}{3}\cdot x-4\right)-\left(\frac{1}{6}\cdot x+1\right)\right)=\left(\frac{1}{3}\cdot x+4\right)-\left(\frac{1}{3}-3\right)\)
\(\Rightarrow\frac{3}{4}x+5-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}+3\)+3
\(\Rightarrow\left(\frac{3}{4}x-\frac{2}{3}x-\frac{1}{6}x\right)+\left(5+4-1\right)=\frac{1}{3}x+\left(4-\frac{1}{3}+3\right)\)
=>\(\frac{-1}{12}x+8=\frac{1}{3}x+\frac{20}{3}\)\(\Rightarrow\frac{-1}{12}x+8-\frac{1}{3}x=\frac{20}{3}\)
\(\Rightarrow\left(\frac{-1}{12}-\frac{1}{3}\right)x+8=\frac{20}{3}\)
\(\Rightarrow\frac{-5}{12}x+8=\frac{20}{3}\Rightarrow\frac{-5}{12}x=\frac{20}{3}-8\)
\(\Rightarrow\frac{-5}{12}x=\frac{-4}{3}\Rightarrow x=\frac{-4}{3}:\frac{-5}{12}=\frac{16}{5}\)
Phân tích thành nhân tử ;
1, \(\left(x+2\right)\cdot\left(x+3\right)\cdot\left(x+4\right)\cdot\left(x+5\right)-24\)
2, \(x\cdot\left(x+4\right)\cdot\left(x+6\right)\cdot\left(x+10\right)+128\)
3, \(\left(x^2+5x+6\right)\cdot\left(x^2-15x+56\right)-144\)
4, \(\left(x-18\right)\cdot\left(x-7\right)\cdot\left(x+35\right)\cdot\left(x+90\right)-67x^2\)
5, \(\left(x-2\right)\cdot\left(x-3\right)\cdot\left(x-4\right)\cdot\left(x-6\right)-72x^2\)
1,(x+2)(x+5)(x+3)(x+4)-24=(x2+7x+10)(x2+7x+12)-24
Đặt x2+7x+10= t ta có t(t+2)-24=t2+2t-24=(t-4)(t+6)
hay (x2+7x+6)(x2+7x+16)
2,x(x+10)(x+4)(x+6)+128=(x2+10x)(x2+10x+24)+128
Đặt x2+10x=t ta có t(t+24)+128=t2+24t+128=(t+8)(t+16)
hay (x2+10x+8)(x2+10x+16)
3,(x+2)(x-7)(x+3)(x-8)-144=(x2-5x-14)(x2-5x-24)-144
Đặt x2-5x-14=t ta có t(t-10)-144=t2-10t-144=(t-18)(t+8)
Hay (x2-5x-32)(x2-5x-6)=(x2-5x-32)(x+1)(x-6)
Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618
Thu gọn biểu thức :
1, \(\left(x+5\right)\cdot\left(x^2-5x+25\right)-\left(x-2\right)\cdot\left(x^2+2x+4\right)\)
2, \(\left(2x-3\right)\cdot\left(4x^2+6x+9\right)-\left(2x+1\right)^3\)
1. \(\left(x+5\right)\left(x^2-5x+25\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3+125-\left(x^3-8\right)=x^3+125-x^3+8=133\)
1,
\(\left(x+5\right)\left(x^2-5x+25\right)-\left(x-2\right)\left(x^2+2x+4\right)\\ =\left(x^3+5^3\right)-\left(x^3-2^3\right)\\ =x^3+125-x^3+8\\ =\left(x^3-x^3\right)+\left(125+8\right)\\ =133\)
b,
\(\left(2x-3\right)\left(4x^2+6x+9\right)-\left(2x+1\right)^3\\ =\left[\left(2x\right)^3-3^3\right]-\left[\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x+1+1\right]\\ =\left(8x^3-27\right)-\left(8x^3+12x^2+6x+1\right)\\ =8x^3-27-8x^3-12x^2-6x-1\\ =\left(8x^3-8x^3\right)-\left(12x^2+6x\right)-\left(27+1\right)\\ =-6x\left(2x+1\right)-28\\ =\left(-2\right)\left[3x\left(2x+1\right)+14\right]\)