1+19
(1+17)(1+17/2)(1+17/3)...... (1+17/19)
(1+19)(1+19/2)(1+19/3)....(1+19/17)
19^100+9^96+19^92+19^88+...+19^4+1/19^102+19^100+19^98+19^96+...+19^2+1
nhanh đang cần gấp
Tính giá trị biểu thức: A =
(1+17).(1+17/2).(1+17/3).(1+17/4)...(1+17/19) phần (1+19).(1+19/2).(1+19/3).(1+19/4)...(1+19/17)
19^100+9^96+19^92+19^88+...+19^4+1/19^102+19^100+19^98+19^96+...+19^2+1
đang cần gấp
Có phải ý bn là thế này ko:
\(\frac{19^{100}+19^{96}+19^{92}+...+19^4+1}{19^{102}+19^{100}+19^{98}+...+19^2+1}\)
so sánh 19^100+1/19^99+1 và 19^99+1/19^98+1
\(\frac{19^{100}+1}{19^{99}+1}< \frac{19^{100}+1+18}{19^{99}+1+18}=\frac{19.\left(19^{99}+1\right)}{19.\left(19^{98}+1\right)}=\frac{19^{99}+1}{19^{98}+1}\)
\(\Rightarrow A< B\)
Vậy A<B
k minh nha
so sánh biểu thức a và b biết:
A=19^18 + 1/ 19^19 + 1
B= 19^17 +1 / 19^18 +1
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(A=\frac{19^{18}+1}{19^{19}+1}< \frac{19^{18}+1+18}{19^{19}+1+18}=\frac{19^{18}+19}{19^{19}+19}=\frac{19\left(19^{17}+1\right)}{19\left(19^{18}+1\right)}=\frac{19^{17}+1}{19^{18}+1}=B\)
\(\Rightarrow\)\(A< B\) ( đpcm )
Vậy \(A< B\)
Chúc bạn học tốt ~
Chứng minh rằng: \(S=\dfrac{1}{19}+\dfrac{1}{19^2}+\dfrac{1}{19^3}+...+\dfrac{1}{19^{10}}< \dfrac{1}{18}\)
`S=1/19+1/19^2+1/19^3+........+1/19^20`
`=>19S=1+1/19+1/19^2+.....+1/19^19`
`=>19S-S=18S=1-1/19^20<1`
`=>S<1/18(đpcm)`
Giải:
S=\(\dfrac{1}{19}+\dfrac{1}{19^2}+\dfrac{1}{19^3}+...+\dfrac{1}{19^{10}}\)
19S=\(1+\dfrac{1}{19}+\dfrac{1}{19^2}+...+\dfrac{1}{19^9}\)
19S-S=\(\left(1+\dfrac{1}{19}+\dfrac{1}{19^2}+...+\dfrac{1}{19^9}\right)-\left(\dfrac{1}{19}+\dfrac{1}{19^2}+\dfrac{1}{19^3}+...+\dfrac{1}{19^{10}}\right)\)
18S=1-\(\dfrac{1}{19^{10}}\)
S=(1-\(\dfrac{1}{19^{10}}\) ):18
S=\(1:18-\dfrac{1}{19^{10}}:18\)
S=\(\dfrac{1}{18}-\dfrac{1}{19^{10}.18}\)
⇒S<\(\dfrac{1}{18}\) (đpcm)
Chúc bạn học tốt!
S = 119+1192+1193+........+11920S=119+1192+1193+........+11920
⇒ 19S=1+119+1192+.....+11919⇒19S=1+119+1192+.....+11919
⇒ 19S−S=18S=1−11920<1⇒19S-S=18S=1-11920<1
⇒ S<118(đpcm)
Tính:
1)1+1/2.(1+2)+1/3.(1+2+3)+...+1/100.(1+2+3+...+100)
2)(1+17)(1+17/2)(1+17/3)...(1+17/19) / (1+19)(1+19/2)(1+19/3)...(1+19/17)
Bài 5: Sắp xếp các phân số sau theo thứ tự tăng dần
a) 9/19; -25/19; 20/19; 42/19; 30/19; 14/19; -13/19
b) 1/3; 1/5; -2/15; 1/6; -2/-5; -1/10; 4/15
a) \(\dfrac{-25}{19}< \dfrac{-13}{19}< \dfrac{9}{19}< \dfrac{14}{19}< \dfrac{20}{19}< \dfrac{30}{19}< \dfrac{42}{19}\)
b) \(\dfrac{-2}{15}< \dfrac{-1}{10}< \dfrac{1}{6}< \dfrac{1}{5}< \dfrac{4}{15}< \dfrac{1}{3}< \dfrac{2}{5}\)
So sánh: C= 19^16+1/19^17+1 và D=19^15+1/19^16+1