\(\left(2x-3\right)^2=\left(2x-3\right)^4\)
tìm x
Tìm x : \(\left(2x-1\right)^3-3\left(1-3x\right)^2=\left(3+2x\right)^3-2\left(x-2\right)\left(x+3\right)\)
\(\left(2x-1\right)^3-3\left(1-3x\right)^2=\left(3+2x\right)^3-2\left(x-2\right)\left(x+3\right)\)
\(8x^3-12x^2+6x-1-3\left(1-6x+9x^2\right)=27+54x+36x^2+8x^3-2\left(x^2+3x-2x-6\right)\)\(8x^3-12x^2+6x-1-3+18x-27x^2=27+54x+36x^2+8x^3-2x^2-6x+4x+12\)\(8x^3-39x^2+24x-4=8x^3+34x^2+52x+39\)
\(8x^3-39x^2+24x-4-8x^3-34x^2-52x-39=0\)
\(-73x^2-28x-43=0\)
Vậy đa thức vô nghiệm
Tìm x: \(\left(2x-1\right)^3-3\left(3x+1\right)^2=\left(3+2x\right)^3-2\left(2-x\right)^2-\left(x-1\right)\left(x+2\right)\)
\(\Leftrightarrow\left(2x-1\right)^3-\left(2x+3\right)^3-3\left(3x+1\right)^2-2\left(x-2\right)^2+\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow8x^3-12x^2+6x-1-8x^3-36x^2-54x-27-3\left(9x^2+6x+1\right)-2\left(x^2-4x+4\right)+x^2+x-2=0\)
\(\Leftrightarrow-48x^2-48x-28-27x^2-18x-3-2x^2+8x-8+x^2+x-2=0\)
\(\Leftrightarrow-76x^2-57x-41=0\)
\(\Leftrightarrow76x^2+57x+41=0\)
\(\text{Δ}=57^2-4\cdot76\cdot41=-9215< 0\)
Vậy: Phương trình vô nghiệm
Tìm x: \(\left(2x-1\right)^3-3\left(x+2\right)\left(x-3\right)=\left(3+2x\right)^3-3x\left(x+1\right)\)
(2x−1)3−3(x+2)(x−3)=(3+2x)3−3x(x+1)
<=>\(8x^3-12x^2+6x-1-3x^2+3x+18=9+54x+36x^2+8x^3-3x^2-3x\)
<=>\(48x^2+42x-8=0\)
<=> \(x=\frac{-21\pm5\sqrt{33}}{48}\)
Tìm x : \(\frac{\left(2x+1\right)^2}{2}-\left|x+1\right|=\frac{\left(x-2\right)^2}{3}-3\left(x+4\right)\)
tìm giá trị của m sao cho phương trình:
\(12-2\left(1-x\right)^2=4\left(x-m\right)-\left(x-3\right)\left(2x+5\right)\) có nghiệm x=3
Thay : \(x=3\) vào phương trình :
\(12-2\cdot\left(1-3\right)^2=4\cdot\left(3-m\right)-\left(3-3\right)\cdot\left(2\cdot3+5\right)\)
\(\Leftrightarrow12-8=12-4m\)
\(\Leftrightarrow4m=8\)
\(\Leftrightarrow m=2\)
thay x=3 vào pt ta được
\(12-2\left(2-3\right)^2=4\left(3-m\right)-\left(3-3\right)\left(2x+5\right)\)
\(12-2\left(4-12+9\right)=12-4m\)
\(12-8+24-18-12=-4m\)
\(-2=-4m=>m=\dfrac{1}{2}\)
vậy để pt có nghiệm x=3 thì m=\(\dfrac{1}{2}\)
từ nãy mk ghi đề bàu bị sai nhé thông cảm
sửa lại thay x=3 vào pt ta được
\(12-2\left(1-3\right)^2=4\left(3-m\right)-\left(3-3\right)\left(2x+5\right)\)
\(12-8=12-4m\)
\(-8=-4m=>m=2\)
Tìm x:
\(1,\left(3x-5\right)^2-\left(3x+1\right)^2=8\)
2,\(2x.\left(8x-3\right)-\left(4x-3\right)^2=27\)
3,\(\left(2x-3\right)^2-\left(2x+1\right)^2=3\)
4, \(\left(x+5\right)^2-x^2=45\)
5, \(\left(x-3\right)^3-\left(x-3\right).\left(x^2+3x+9\right)+9.\left(x+1\right)^2=18\)
6,\(x.\left(x-4\right).\left(x+4\right)-\left(x-5\right).\left(x^2+5x+25\right)=13\)
1. (3x - 5)2 - (3x + 1)2 = 8
=> (3x - 5 - 3x - 1)(3x - 5 + 3x + 1) = 8
=> -6(6x - 4) = 8
=> 6x - 4 = \(\dfrac{-4}{3}\)
\(\Rightarrow x=\dfrac{4}{9}\)
2) 2x(8x - 3) - (4x - 3)2 = 27
=> 16x2 - 6x - 16x2 + 24x - 9 = 27
=> 18x - 9 = 27
=> x = 2
3) (2x - 3)2 - (2x + 1)2 = 3
=> (2x - 3 - 2x - 1)(2x - 3 + 2x +1) = 3
=> -4(4x - 2) = 3
=> 4x - 2 = \(\dfrac{-3}{4}\)
\(\Rightarrow x=\dfrac{5}{16}\)
4) (x + 5)2 - x2 = 45
=> (x + 5 - x)(x + 5 + x) = 45
=> 5(2x + 5) = 45
=> 2x + 5 = 9
=> x = 2
5) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 18
=> x3 - 9x2 + 27x - 27 - x3 + 27 + 9(x2 + 2x + 1) = 18
=> -9x2 + 27x + 9x2 + 18x + 9 = 18
=> 45x + 9 = 18
=> 45x = 9
=> x = \(\dfrac{1}{5}\)
6) x(x - 4)(x + 4) - (x - 5)(x2 + 5x + 25) = 13
=> x (x2 - 16) - (x3 - 125) = 13
=> x3 - 16x - x3 + 125 = 13
=> -16x = -112
=> x = 7.
Tìm x: \(\left|x-5\right|+\frac{\left(x-1\right)\left(x-3\right)}{2}=\frac{\left(x+1\right)^2}{3}-\frac{\left(1-2x\right)^2}{4}\)
Tìm x: \(\left(2x+1\right)^2-3\left(2-x\right)^2+2\left(x-1\right)\left(x+2\right)=4-2\left(1-x\right)\)
\(\Leftrightarrow4x^2+4x+1-3\left(x^2-4x+4\right)+2\left(x^2+x-2\right)=4-2+2x\)
\(\Leftrightarrow4x^2+4x+1-3x^2+12x-12+2x^2+2x-4=2x+2\)
\(\Leftrightarrow3x^2+18x-15-2x-2=0\)
\(\Leftrightarrow3x^2+16x-17=0\)
\(\text{Δ}=16^2-4\cdot3\cdot\left(-17\right)=460>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-16-2\sqrt{115}}{6}=\dfrac{-8-\sqrt{115}}{3}\\x_2=\dfrac{-8+\sqrt{115}}{3}\end{matrix}\right.\)
Tìm x: \(\frac{\left(2-3x\right)^2}{3}-\frac{\left(1+2x\right)^2}{2}=\frac{3}{4}-2\left(x-1\right)\left(x+2\right)+x\left(1+x\right)\)
\(\frac{\left(2-3x\right)^2}{3}-\frac{\left(1+2x\right)^2}{2}=\frac{3}{4}-2\left(x-1\right)\left(x+2\right)+x\left(1+x\right)\)
\(\frac{2^2-12x-3x^2}{3}-\frac{1^2+4x+2x^2}{2}=\frac{3}{4}-\left(x^2+x-2\right)+3x\)
\(\frac{2.\left(4-12x-3x^2\right)}{6}-\frac{3.\left(1+4x+2x^2\right)}{6}=\frac{11}{4}-x^2+2x\)
\(\frac{8-24x-6x^2}{6}-\frac{3+12x+2x^2}{6}=\frac{11}{4}-x^2+2x\)
\(\frac{8-24x-6x^2-3-12x-2x^2}{6}=\frac{11}{4}-x^2+2x\)
\(\frac{5-36x-8x^2}{6}=\frac{11}{4}-x^2+2x\)
Chỗ đây thì mk chịu