Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
1 tháng 10 2023 lúc 20:08

Đường tròn \(\left( C \right)\) có tâm \(I\left( { - 1;2} \right)\). Đường thẳng \(d\) đi qua điểm \(M\left( {0;2} \right)\) nhận \(\overrightarrow {IM}  = \left( {1;0} \right)\) làm vecto pháp tuyến có phương trình là \(x = 0\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
27 tháng 9 2023 lúc 0:10

a) Thay điểm \(M(4;6)\)vào phương trình đường tròn \({x^2} + {y^2} - 2x - 4y - 20 = 0\)

ta có:

\({4^2} + {6^2} - 2.4 - 4.6 - 20 = 0\)

Suy ra, điểm M thuộc đường tròn (C)

b) Đường tròn có tâm \(I(1;2)\)

Phương trình tiếp tuyến d của (C) tại \(M(4;6)\) là:

\(\begin{array}{l}\left( {1 - 4} \right)\left( {x - 4} \right) + \left( {2 - 6} \right)\left( {y - 6} \right) = 0\\ \Leftrightarrow 3x + 4y -36 = 0\end{array}\)

c) Tiếp tuyến của đường tròn song song với đường thẳng \(4x + 3y + 2022 = 0\) nên phương trình có dạng \(d:4x + 3y + c = 0\)

Ta có tâm và bán kính của đường tròn là: \(I(1;2),r = \sqrt {{1^2} + {2^2} + 20}  = 5\)

Khoảng cách từ tâm đến tiếp tuyến là bán kính nên: \(d\left( {I,d} \right) = \frac{{\left| {4.1 + 3.2 + c} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 5 \Rightarrow \left[ \begin{array}{l}c = 15\\c =  - 35\end{array} \right.\)

Vậy đường tròn (C) có hai tiếp tuyến song song với đường thẳng \(4x + 3y + 2022 = 0\) là \({d_1}:4x + 3y + 15 = 0,{d_2}:4x + 3y - 35 = 0\)

Ma Ron
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2023 lúc 14:26

(C): x^2-2x+1+y^2+4y+4=9

=>(x-1)^2+(y+2)^2=9

=>I(1;-2); R=3

Khi x=1 và y=5 thì (1-1)^2+(5+2)^2=49<>9

=>A nằm ngoài (C)

Gọi (d): y=ax+b là phương trình tiếp tuyến tại A của (C)

Thay x=1 và y=5 vào (d), ta được:

a+b=5

=>b=5-a

=>y=ax+5-a

=>ax-y-a+5=0

Theo đề, ta có: d(I;(d))=3

=>\(\dfrac{\left|1\cdot a+\left(-2\right)\cdot\left(-1\right)-a+5\right|}{\sqrt{a^2+1}}=3\)

=>9a^2+9=(a+2-a+5)^2

=>9a^2+9=49

=>9a^2=40

=>a^2=40/9

=>\(a=\pm\dfrac{2\sqrt{10}}{3}\)

=>\(b=5\mp\dfrac{2\sqrt{10}}{3}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
27 tháng 9 2023 lúc 0:07

Ta có \({4^2} + {6^2} - 2.4 - 4.6 - 20 = 0\), nên điểm A thuộc (C)

Đường tròn \((C):{x^2} + {y^2} - 2x - 4y - 20 = 0\) có tâm \(I(1;2)\)

Phương trình tiếp tuyến d của (C) tại \(A(4;6)\) là:

\(\begin{array}{l}\left( {4 - 1} \right)\left( {x - 4} \right) + \left( {6 - 2} \right)\left( {y - 6} \right) = 0\\ \Leftrightarrow 3x + 4y + 16 = 0\end{array}\)

Hoài Trung
Xem chi tiết
Hồng Phúc
18 tháng 4 2021 lúc 18:04

a, Đường tròn cần tìm có tâm \(I=\left(-\dfrac{1}{2};\dfrac{3}{2}\right)\), bán kính \(R=\dfrac{\sqrt{2}}{2}\)

Phương trình đường tròn: \(\left(x+\dfrac{1}{2}\right)^2+\left(y-\dfrac{3}{2}\right)^2=\dfrac{1}{2}\)

b, (C) có tâm \(I=\left(1;2\right)\), bán kính \(R=\sqrt{2}\)

Giao điểm của (C) và trục tung có tọa độ là nghiệm hệ:

\(\left\{{}\begin{matrix}x^2+y^2-2x-4y+3=0\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^2-4y+3=0\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}y=1\\x=0\end{matrix}\right.\)

\(\Rightarrow\) Giao điểm: \(M=\left(0;3\right);N=\left(0;1\right)\)

Phương trình tiếp tuyến tại M có dạng: \(\Delta_1:ax+by-3b=0\left(a^2+b^2\ne0\right)\)

Ta có: \(d\left(I;\Delta_1\right)=\dfrac{\left|a+2b-3b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\)

\(\Leftrightarrow a^2+b^2-2ab=2a^2+2b^2\)

\(\Leftrightarrow\left(a+b\right)^2=0\)

\(\Leftrightarrow a=-b\)

\(\Rightarrow\Delta_1:x-y+3=0\)

Tương tự ta tìm được tiếp tuyến tại N: \(\Delta_2=x+y-1=0\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
1 tháng 10 2023 lúc 20:05

Đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 2} \right)\). Đường thẳng \(\Delta \) đi qua điểm \(N\left( {1;0} \right)\) nhận \(\overrightarrow {IN}  = \left( {0;2} \right)\) làm vecto pháp tuyến là \(y = 0\).

Ái Nữ
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 4 2021 lúc 20:27

1.

Tạo với Ox là tạo với tia Ox hay trục hoành nhỉ? 2 cái này khác nhau đấy. Tạo với tia Ox thì chỉ có 1 góc 60 độ theo chiều dương, tạo với trục hoành thì có 2 góc 60 và 120 đều thỏa mãn. Coi như tạo tia Ox đi

Đường tròn tâm \(I\left(-2;-2\right)\) bán kính \(R=5\)

\(tan60^0=\sqrt{3}\Rightarrow\) tiếp tuyến có hệ số góc bằng \(\sqrt{3}\Rightarrow\) pt có dạng:

\(y=\sqrt{3}x+b\Leftrightarrow\sqrt{3}x-y+b=0\)

\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2\sqrt{3}+2+b\right|}{\sqrt{3+1}}=5\)

\(\Leftrightarrow\left|b+2-2\sqrt{3}\right|=10\Rightarrow\left[{}\begin{matrix}b=8+2\sqrt{3}\\b=-12+2\sqrt{3}\end{matrix}\right.\)

Có 2 tiếp tuyến: \(\left[{}\begin{matrix}\sqrt{3}x-y+8+2\sqrt{3}=0\\\sqrt{3}x-y-12+2\sqrt{3}=0\end{matrix}\right.\)

Nguyễn Việt Lâm
9 tháng 4 2021 lúc 20:35

2.

(C1) có tâm \(I\left(1;1\right)\) bán kính \(R_1=\sqrt{2}\)

(C2) có tâm \(J\left(2;3\right)\) bán kính \(R_2=4\)

Gọi tiếp tuyến chung d có pt: \(ax+by+c=0\)

\(\left\{{}\begin{matrix}d\left(I;d\right)=R_1\\d\left(J;d\right)=R_2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\left|a+b+c\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\\\dfrac{\left|2a+3b+c\right|}{\sqrt{a^2+b^2}}=4\end{matrix}\right.\)

\(\Rightarrow2\sqrt{2}\left|a+b+c\right|=\left|2a+3b+c\right|\)

? Đề nghiêm túc đấy chứ? Cho kiểu này thì sấp mặt, tối thiểu pt (C1) cũng có dạng \(x^2+y^2-2x-2y+1=0\) để học sinh còn thở chứ.

Nguyễn Việt Lâm
9 tháng 4 2021 lúc 20:48

Ủa, nhìn lại thì bài 2 người ta cho đề kiểu hack não.

\(\overrightarrow{IJ}=\left(1;2\right)\Rightarrow IJ=\sqrt{5}< R_2-R_1=4-\sqrt{2}\)

Do đó \(\left(C_2\right)\) chứa \(\left(C_1\right)\) nên ko tồn tại tiếp tuyến chung của 2 đường tròn

 

bob kingston
Xem chi tiết
tran gia vien
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 3 2021 lúc 22:02

Đường tròn (C) tâm \(I\left(2;4\right)\) bán kính \(R=5\)

Điểm A thuộc (C) nên tiếp tuyến d qua A vuông góc IA

\(\Rightarrow\overrightarrow{AI}=\left(3;4\right)\Rightarrow\) đường thẳng d nhận (3;4) là 1 vtpt

Phương trình d:

\(3\left(x+1\right)+4\left(y-0\right)=0\Leftrightarrow3x+4y+3=0\)