rg (x/x-3 - x+3/9-x^2) : x+5/x-3
1. Cho biểu thức
E= \(\frac{x^2-9-\left(4x-2\right)\left(x-3\right)}{x^2-6x+9}\)
a, tìm ĐKXĐ và RG
b, Tính E với x=\(\frac{1}{2}\)
c, Tìm x biết E= 2
2. cho biểu thức
M= \(\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)
a, RG
b. tính x để M = \(\frac{-1}{2}\)
3, cho biểu thức
A= \((\frac{1}{x^2-x}+\frac{1}{x-1}):\frac{x+1}{x^2-2x+1}\)
a, RG
b. Tìm A khi |x| = 2
c. Tìm x biết A=\(\frac{2}{3}\)
d. Tìm x nguyên để A nguyên
e. Tìm GTLN của B= \(x^2.A\)
4. cho biểu thức
D=\((\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}):\frac{x^2-3x}{2x^2-x^3}\)
a, RG
b,Tính D khi |x-5| = 2
CÁC BẠN GIẢI NHANH GIÚP MIK TRONG TUẦN NÀY AK XIN CẢM ƠN HỨA SẼ TICK CHO NHA THANKS
RG: A = \(\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}\) - \(\dfrac{2\sqrt{x}}{\sqrt{x}-1}\) + \(\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\) ; ĐKXĐ: x ≥ 0
\(A=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(A=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(A=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(A=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-3\sqrt{x}-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{\left(x\sqrt{x}-x\right)+\left(16\sqrt{x}-16\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{x\left(\sqrt{x}-1\right)+16\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{\left(\sqrt{x}-1\right)\left(x+16\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{x+16}{\sqrt{x}+3}\)
P=\(\left(\frac{2\sqrt{x}}{9-x}+\frac{1}{3+\sqrt{x}}\right)\).\(\frac{x\left(3-\sqrt{x}\right)}{\sqrt{x}-2}\)
a, RG
b, tìm x để P=\(-\frac{1}{3}\)
giúp mik vs nha!
a/ ĐKXĐ : \(x\ge0;x\ne9;x\ne4\)
Ta có :
\(P=\left(\frac{2\sqrt{x}}{9-x}+\frac{1}{3+\sqrt{x}}\right).\frac{x\left(3-\sqrt{x}\right)}{\sqrt{x}-2}\)
\(=\left(\frac{2\sqrt{x}}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}+\frac{3-\sqrt{x}}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right).\frac{x\left(3-\sqrt{x}\right)}{\sqrt{x-2}}\)
\(=\frac{\sqrt{x}+3}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{x\left(3-\sqrt{x}\right)}{\sqrt{x}-2}\)
\(=\frac{1}{\sqrt{x}-2}\)
Vậy \(P=\frac{1}{\sqrt{x}-2}\) với ĐKXĐ \(x\ge0;x\ne9;x\ne4\)
b/ Với ĐKXĐ \(x\ne0;x\ne9;x\ne4\) ta có :
\(P=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{\sqrt{x}-2}=-\frac{1}{3}\)
\(\Leftrightarrow2-\sqrt{x}=3\)
\(\Leftrightarrow\sqrt{x}=-1\) (vô lí)
Vậy không tìm đc x thỏa mãn
\(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{\sqrt{x}+1}-\dfrac{2}{x-1}\)
a) Rg A
b) Tính A khi x=9; x=7-\(4\sqrt{3}\)
c) Tìm x ϵ Z để A có giá trị nguyên
d) Tìm x để A=\(\dfrac{1}{\sqrt{x}}\); A=-2
a)ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{x+\sqrt{x}-2\sqrt{x}+2-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
b) \(x=9\Rightarrow A=\dfrac{3}{3+1}=\dfrac{3}{4}\)
\(x=7-4\sqrt{3}\Rightarrow A=\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{7-4\sqrt{3}}+1}=\dfrac{\sqrt{7-2\sqrt{12}}}{\sqrt{7-2\sqrt{12}}+1}=\dfrac{\sqrt{4-2\sqrt{3}\sqrt{4}+3}}{\sqrt{4-2\sqrt{3}\sqrt{4}+3}+1}=\dfrac{2-\sqrt{3}}{2-\sqrt{3}+1}=\dfrac{2-\sqrt{3}}{3-\sqrt{3}}=\dfrac{\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}=\dfrac{3-\sqrt{3}}{6}\)
P=\(\dfrac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)
a) RG P b)Tìm giá trị lớn nhất của P
a.\(P=\dfrac{3\left(x+\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(ĐK:x\ge0;x\ne1;x\ne-2\)
\(P=\dfrac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3x+3\sqrt{x}-9+x-\sqrt{x}+3\sqrt{x}-3-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)
b.\(P=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{\sqrt{x}+2}+\dfrac{2}{\sqrt{x}+2}\)
\(=1+1+1+\dfrac{2}{\sqrt{x}+2}\)
Để P lớn nhất thì \(\sqrt{x}+2\) nhỏ nhất
Mà \(\sqrt{x}+2\ge2\) \(\Rightarrow Min=2\)
\(\Rightarrow P\le1+1+1+\dfrac{2}{2}=1+1+1+1=4\)
Vậy \(P_{max}=4\) khi \(x=0\)
Tính nhẩm
3 x 4 = 2 x 6 = 4 x 3 = 5 x 6 =
3 x 7 = 2 x 8 = 4 x 7 = 5 x 4 =
3 x 5 = 2 x 4 = 4 x 9 = 5 x 7 =
3 x 8 = 2 x 9 = 4 x 4 = 5 x 9 =
Học sinh nhẩm và ghi kết quả như sau:
3 x 4 = 12 2 x 6 = 12 4 x 3 = 12 5 x 6 = 30
3 x 7 = 21 2 x 8 = 16 4 x 7 = 28 5 x 4 = 20
3 x 5 = 15 2 x 4 = 8 4 x 9 = 36 5 x 7 = 35
3 x 8 = 24 2 x 9 = 18 4 x 4 = 16 5 x 9 = 45
3 x4 = 12
3 x7 = 21
3 x5 = 15
3 x8 =24
2 x 6= 12
2 x8 = 16
2 x4 =8
2 x9 =18
4 x3 =12
4 x7 =28
4 x9 =36
4 x4 =16
5 x6 =30
5 x4 =20
5 x7 =35
5 x9 =45
3 x 4 = 12 2 x 6 = 12 4 x 3 = 12 5 x 6 = 30
3 x 7 = 21 2 x 8 = 16 4 x 7 = 28 5 x 4 = 20
3 x 5 = 15 2 x 4 = 8 4 x 9 = 36 5 x 7 = 35
3 x 8 = 24 2 x 9 = 18 4 x 4 = 16 5 x 9 = 45
Cho biểu thức
\(P=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
a,Đkxđ, Rg
b,Tìm x để \(P=\frac{-3}{4}\)
c,Tìm \(x\in ZđểP\inℤ\)
d,Tính gtbt P khi x2-9=0
e,Tìm x để P >0
a, Để P xác định <=> \(\hept{\begin{cases}x+3\ne0\\x^2+x-6\ne0\\2-x\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-3\\x^2-2x+3x-6\ne\\x\ne2\end{cases}0\Rightarrow\hept{\begin{cases}x\ne-3\\\left(x-2\right)\\x\ne2\end{cases}}}\left(x+3\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)
Rút gọn
\(P=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
\(=\frac{x+2}{x+3}-\frac{5}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x-2}\)
\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+3x-12}{\left(x+3\right)\left(x+2\right)}=\frac{x\left(x-4\right)+3\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)
b,Để \(P=\frac{-3}{4}\)
Thì \(\frac{x-4}{x-2}=\frac{-3}{4}\)
\(\Rightarrow4x-16=-3x+6\)
\(\Rightarrow4x-16-3x+6=0\)
\(\Rightarrow x-10=0\)
\(\Rightarrow x=10\left(t/m\right)\)
Vậy \(P=\frac{-3}{4}\)khi x=10
c,Để \(P\inℤ\Rightarrow x-4⋮x-2\)
mà \(x-4=\left(x-2\right)-2\)
Vì \(x-2⋮\left(x-2\right)\Rightarrow-2⋮\left(x-2\right)\)
\(\Rightarrow x-2\inƯ\left(-2\right)=\left\{\pm1,\pm2\right\}\)
\(\Rightarrow x\in\left\{3,1,4,0\right\}\left(t/m\right)\)
Vậy ......................
d,\(x^2-9=0\)
\(\Rightarrow x^2=9\)
\(\Rightarrow x=\pm3\)
TH1
Thay x= 3 ta có
\(P=\frac{3-4}{3-2}\)
\(=\frac{-1}{1}=-1\)
TH2
\(x=-3\)
Vậy \(P=-1\Leftrightarrow x=3\)
e,Để P >0 khi
\(\orbr{\begin{cases}\hept{\begin{cases}x-4>0\\x-2>0\end{cases}}\\\hept{\begin{cases}x-4< 0\\x-2< 0\end{cases}}\end{cases}}\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x>4\\x>2\end{cases}}\\\hept{\begin{cases}x< 4\\x< 2\end{cases}}\end{cases}}\Rightarrow\orbr{\begin{cases}x>4\\x< 2\end{cases}}\)
Vậy \(P>0\Leftrightarrow\orbr{\begin{cases}x>4\\x< 2\&x\ne-3\end{cases}}\)
37 x 5^4 trên 25 ^ 2
2 ^4 x 2^6 x 3^8 x 9^2 trên 4^4 x 3^11
3 x 9^4 x 9^3 trên 3^2 x 9
125 x 5 x 64 - 25^3 x10 x 4 trên 5^7 x 8
\(\dfrac{37\cdot5^4}{25^2}=\dfrac{37\cdot5^4}{5^4}=37\\ \dfrac{2^4\cdot2^6\cdot3^8\cdot9^2}{4^4\cdot3^{11}}=\dfrac{2^{10}\cdot3^8\cdot3^4}{2^8\cdot3^{11}}=2^2\cdot3=12\\ \dfrac{3\cdot9^4\cdot9^3}{3^2\cdot9}=\dfrac{3\cdot3^8\cdot3^6}{3^2\cdot3^2}=3^{11}\\ \dfrac{125\cdot5\cdot64-25^3\cdot10\cdot4}{5^7\cdot8}=\dfrac{5^3\cdot5\cdot2^6-5^6\cdot2\cdot5\cdot2^2}{5^7\cdot2^3}=\dfrac{5^4\cdot2^3\left(2^3-5^3\right)}{5^7\cdot2^3}=\dfrac{8-125}{5^3}=\dfrac{-117}{125}\)
Tính nhanh các biểu thức sau :
a) (45 – 5 x 9) x 1 x 2 x 3 x 4 x 5 x 6 x 7
b) (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) x (72 – 8 x 8 – 8)
c) (36 – 4 x 9) : (3 x 5 x 7 x 9 x 11)
d) (27 – 3 x 9) : 9 x 1 x 3 x 5 x 7
Ta có:
a) ( 45 – 5 x 9 ) x 1 x 2 x 3 x 4 x 5 x 6 x 7
= (45 – 45) x 1 x 2 x 3 x 4 x 5 x 6 x 7
= 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7
= 0
b) (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) x (72 – 8 x 8 – 8)
= (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) x (72 – 64 – 8)
= (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) x 0
= 0
c) (36 – 4 x 9) : (3 x 5 x 7 x 9 x 11)
= (36 – 36) : (3 x 5 x 7 x 9 x 11)
= 0 : (3 x 5 x 7 x 9 x 11)
= 0
d) (27 – 3 x 9) : 9 x 1 x 3 x 5 x 7
= (27 – 27) : 9 x 1 x 3 x 5 x 7
= 0 : 9 x 1 x 3 x 5 x 7
=0
a) ( 45 – 5 x 9 ) x 1 x 2 x 3 x 4 x 5 x 6 x 7
= 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7
b) (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) x (72 – 8 x 8 – 8)
= (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) x 0
c) (36 – 4 x 9) : (3 x 5 x 7 x 9 x 11)
= 0 : (3 x 5 x 7 x 9 x 11)
d) (27 – 3 x 9) : 9 x 1 x 3 x 5 x 7
= 0 : 9 x 1 x 3 x 5 x 7 Nếu đúng thì k cho mình nhé bạn!
a. ( 45 – 5 x 9 ) x 1 x 2 x 3 x 4 x 5 x 6 x 7
= (45 – 45) x 1 x 2 x 3 x 4 x 5 x 6 x 7
= 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7
= 0
b. (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) x (72 – 8 x 8 – 8)
= (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) x (72 – 64 – 8)
= (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) x 0
= 0
c. (36 – 4 x 9) : (3 x 5 x 7 x 9 x 11)
= (36 – 36) : (3 x 5 x 7 x 9 x 11)
= 0 : (3 x 5 x 7 x 9 x 11)
= 0
d. (27 – 3 x 9) : 9 x 1 x 3 x 5 x 7
= (27 – 27) : 9 x 1 x 3 x 5 x 7
= 0 : 9 x 1 x 3 x 5 x 7
=0