cho các số x y thỏa mãn đẳng thức 8x^2+14xy+8y^2 +2x-2y+2=0
cho các số x,y thỏa mãn đẳng thức \(5x^2+5y^2+8xy-2x+2y+2=0\)
Pt trên tương đương: (x2-2x+1)+(y2+2y+1)+(4x2+8xy+4y2)=0
<=>(x-1)2+(y+1)2+(2x+2y)2=0
<=>x=1;y=-1;x=-y
Vậy x=1;y=-1
Cho các số thỏa mãn đẳng thức 5x^2 + 5y^2 +8xy - 2x + 2y + 2 = 0
Tính giá trị biểu thức M= (x+y)^2007 +(x-2)^2008 + (y+1)^2009
Cho các số x,y thỏa mãn đẳng thức 5x^2+5y^2+8xy-2x+2y+2=0.Tính giá trị của biểu thức M=(x+y)^2007+(x-2)^2008+(y+1)^2009
cho các số x,y thỏa mãn đẳng thức \(3x^2+3y^2+4xy+2x-2y+2=0\\ \)
tính giá trị biểu thức M=\(\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\)
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
Cho x,y,z là các số thực dương thỏa mãn xy+yz+zx \(\ge\)5 . Tìm GTNN của biểu thức:
\(A=\frac{x^2}{\sqrt{8x^2+3y^2+14xy}}+\frac{y^2}{\sqrt{8y^2+3z^2+14yz}}+\frac{z^2}{\sqrt{8z^2+3x^2+14zx}}\)
\(5\le xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)\(\Leftrightarrow\)\(x+y+z\ge\sqrt{15}\)
\(\frac{x^2}{\sqrt{8x^2+3y^2+14xy}}=\frac{x^2}{\sqrt{8x^2+2xy+3y^2+12xy}}\ge\frac{x^2}{\sqrt{9x^2+12xy+4y^2}}=\frac{x^2}{3x+2y}\)
\(A\ge sigma\frac{x^2}{3x+2y}\ge\frac{\left(x+y+z\right)^2}{5\left(x+y+z\right)}=\frac{x+y+z}{5}\ge\sqrt{\frac{3}{5}}\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{\frac{5}{3}}\)
Cho các số x, y thỏa mãn đẳng thức \(5x^2+5y^2+8xy-2x+2y+2=0\). Tính giá trị của biểu thức
\(M=\left(x+y\right)^{2023}+\left(x-2\right)^{2024}+\left(y+1\right)^{2025}\)
\(5x^2+5y^2+8xy-2x+2y+2=0\)
=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
=>x=1 và y=-1
\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)
cho các số x,y thỏa mãn đẳng thức 2x2 + 2y2 + 2xy + 2y + 2 - 2x = 0
Tính giá trị biểu thức A = ( x + y)2010 + (x - 2)2011 + (y - 1)2012
Tìm các số nguyên x, y thỏa mãn đẳng thức:
2x2+y2+3xy+3x+2y+2=0
Tìm x, y thỏa mãn các đẳng thức: x^3 + y^3 - 8xy√2(x^2 + y^2) + 7x^2y + 7xy^2 = 0 và √y - √(2x - 3) + 2x = 6