Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Phươngk9
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2023 lúc 22:24

a:

Sửa đề: \(I\left(\dfrac{1}{2};-3\right)\)

Thay \(x=\dfrac{1}{2};y=-3\) vào (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\), ta được:

\(\left(1-2m\right)\cdot\dfrac{1}{2}+m-\dfrac{7}{2}=-3\)

=>\(\dfrac{1}{2}-m+m-\dfrac{7}{2}=-3\)

=>\(\dfrac{1}{2}-\dfrac{7}{2}=-3\)

=>-3=-3(đúng)

vậy: I(1/2;-3) là điểm cố định mà (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\) luôn đi qua

b: \(\left(d\right):y=\left(2m+1\right)x+m-2\)

\(=2mx+x+m-2\)

\(=m\left(2x+1\right)+x-2\)

Điểm mà (d) luôn đi qua có tọa độ là:

\(\left\{{}\begin{matrix}2x+1=0\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}-2=-\dfrac{5}{2}\end{matrix}\right.\)

Đỗ Hà Quyên
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 10 2021 lúc 14:33

a, Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà đths luôn đi qua

\(\Leftrightarrow y_0=\left(m-1\right)x_0+3\\ \Leftrightarrow y_0=mx_0-x_0+3\\ \Leftrightarrow mx_0+3-x_0-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\3-x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=3\end{matrix}\right.\\ \Leftrightarrow A\left(0;3\right)\)

Vậy đths luôn đi qua điểm \(A\left(0;3\right)\)

Nguyễn Hoàng Minh
19 tháng 10 2021 lúc 14:35

\(b,\) Gọi \(B\left(x_0;y_0\right)\) là điểm cố định mà đths luôn đi qua

\(\Leftrightarrow y_0=\left(m+2\right)x_0-\left(m-1\right)\\ \Leftrightarrow mx_0+2x_0-m+1-y_0=0\\ \Leftrightarrow m\left(x_0-1\right)+\left(2x_0-y_0+1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0-1=0\\2x_0-y_0+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=1\\y_0=3\end{matrix}\right.\\ \Leftrightarrow B\left(1;3\right)\)

Vậy đths luôn đi qua điểm \(B\left(1;3\right)\)

Câu c bạn làm tương tự câu b

Mạc Hy
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 9 2021 lúc 14:16

Giả sử điểm cố định mà đường thẳng đi qua là \(M\left(x_0;y_0\right)\Rightarrow\) với mọi m ta có:

\(y_0=\left(2m+3\right)x_0-m+1\)

\(\Leftrightarrow m\left(2x_0-1\right)+3x_0-y_0+1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_0-1=0\\3x_0-y_0+1=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_0=\dfrac{1}{2}\\y_0=\dfrac{5}{2}\end{matrix}\right.\)

Vậy điểm cố định mà đường thẳng đi qua là \(M\left(\dfrac{1}{2};\dfrac{5}{2}\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 2 2018 lúc 13:16

Gọi M (x; y) là điểm cố định cần tìm, khi đó

( 5   –   2 m ) x   +   m   +   1   =   y  đúng với mọi m

  − 2 m x   +   m   +   1   +   5 x   –   y   =   0  đúng với mọi m

  m   ( − 2 x   +   1 )   +   1   –   y   +   5 x   =   0  đúng với mọi m

  ⇔ − 2 x + 1 = 0 1 − y + 5 x = 0 ⇔ x = 1 2 1 − y + 5. 1 2 = 0 ⇔ x = 1 2 y = 7 2 ⇒ M 1 2 ; 7 2

Vậy điểm  M 1 2 ; 7 2   là điểm cố định cần tìm 

Đáp án cần chọn là: D

Nguyễn Ánh Tuyền
Xem chi tiết
Hải Nam Xiumin
Xem chi tiết
Hoàng Lê Bảo Ngọc
11 tháng 9 2016 lúc 9:29

a/ Gọi điểm cố định là N(x0;y0)

Suy ra N thuộc đồ thị hàm số y = (m-2)x+3 nên : 

\(y_0=\left(m-2\right)x_0+3\Leftrightarrow mx_0-\left(2x_0+y_0-3\right)=0\)

Vì đths luôn đi qua N với mọi x,y nên : 

\(\begin{cases}x_0=0\\2x_0+y_0-3=0\end{cases}\) \(\Leftrightarrow\begin{cases}x_0=0\\y_0=3\end{cases}\)

Vậy điểm cố định là \(N\left(0;3\right)\)

b,c tương tự

 

 

Huỳnh Thu An
14 tháng 9 2016 lúc 13:33

Toán lớp 9Toán lớp 9

Cổn Cổn
Xem chi tiết
Luyện Hoàng Hương Thảo
Xem chi tiết
Thanh Tùng DZ
2 tháng 5 2020 lúc 9:45

a) giả sử đường thẳng trên đi qua điểm cố định A ( x0 ; y0 )

\(\Rightarrow y_0=\left(m-2\right)x_0+3\) với mọi m

\(\Leftrightarrow x_0m-\left(y_0+2x_0-3\right)=0\)với mọi m

\(\Leftrightarrow\hept{\begin{cases}x_0=0\\y_0+2x_0-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=0\\y_0=3\end{cases}}}\)

Vậy điểm cố định là ( 0 ; 3 )

Khách vãng lai đã xóa
Thanh Tùng DZ
2 tháng 5 2020 lúc 9:45

tương tự : b) ( -1 ; 2 )

c) ( -2 ; 1 )

Khách vãng lai đã xóa
Lizy
Xem chi tiết

\(y=\left(m^2-m-1\right)x-2m^2+2m-3\)

\(=m^2x-mx-x-2m^2+2m-3\)

\(=m^2\left(x-2\right)+m\left(2-x\right)-x-3\)

Tọa độ điểm cố định mà (d) luôn đi qua là:

\(\left\{{}\begin{matrix}x-2=0\\2-x=0\\y=-x-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=-2-3=-5\end{matrix}\right.\)

Gọi điểm cố định mà ĐTHS luôn đi qua có tọa độ \(\left(x_0;y_0\right)\)

\(\Rightarrow y_0=\left(m^2-m-1\right)x_0-2m^2+2m-3\), với mọi m

\(\Rightarrow m^2\left(x_0-2\right)-m\left(x_0-2\right)-\left(x_0+y_0+3\right)=0\), với mọi m

\(\Rightarrow\left\{{}\begin{matrix}x_0-2=0\\x_0-2=0\\x_0+y_0+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=2\\y_0=-5\end{matrix}\right.\)

Vậy ĐTHS luôn đi qua điểm cố định có tọa độ \(\left(2;-5\right)\)