chứng minh rằng với mọi số tự nhiên N hai số 2n+3 và 4n+8laf hai số nguyên tố cùng nhau
Chứng minh rằng với mọi số tự nhiên n hai số 2n+ 3 và 4n + 8 là hai số nguyên tố cùng nhau
Giả sử: \(UCLN\left(2n+3;4n+8\right)=d\)
=> \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\) => \(\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
=> \(2⋮d\) => \(\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)
Có 2n+3 là số lẻ => \(2n+3⋮̸2\)
=> d = 1
=> đpcm
Chứng minh rằng với mọi số tự nhiên n hai số 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau.
Gọi \(d=UCLN\left(2n+3,4n+8\right)\)
Suy ra \(2n+3\)chia hết cho d và \(4n+8\)chia hết cho d
Ta có :
\(2n+3\)chia hết cho d \(=2.\left(2n+3\right)\text{⋮}d\)nên
Vì \(4n+8\text{⋮}d\)và \(4n+6\text{⋮}d\)nên
\(\left(4n+8\right)-\left(4n+6\right)\text{⋮}d=2\text{⋮}d=d..\left\{1;2\right\}\)
Vì \(2n+3\)là số lẻ nên \(d=2\)
Vậy đó
Chứng minh rằng với mọi số tự nhiên n thì hai số: 2n + 5 và 4n + 8 là hai số nguyên tố cùng nhau.
Gọi d=ƯCLN(2n+5;4n+8)
=>4n+10-4n-8 chia hết cho d
=>2 chia hết cho d
mà 2n+5 lẻ
nên d=1
=>ĐPCM
Chứng minh rằng vơi mọi số tự nhiên n hai số 2n+3 và 4n+8 là hai số nguyên tố cùng nhau
Gọi \(d=UCLN\left(2n+3,4n+8\right)\)
Suy ra \(2n+3\)chia hết d và \(4n+8\)chia hết d
Ta có :
\(2n+3\)chia hết d \(=2=2.\left(2n+3\right)\)chia hết d \(=4n+6\)chia hết d
Vì \(4n+8\)chia hết d và \(4n+6\)chia hết d nên \(\left(4n+8\right)-\left(4n+6\right)\)
chia hết d nên 2 chia hết d và d thuộc { 1;2}
Vì 2n+ 3 là số lẻ nên d = 2 là không thỏa mãn . Vậy d = 1 . Vậy với mọi số tự nhiên n thì 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau
sdasdaasdgafyukdhasgujhdsagdsjkhdsakisa
Giả sử : \(UCLN\left(2n+3;4n+8\right)=d\)
= \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)= \(\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
= \(2⋮d\)= \(\orbr{\begin{cases}d=1\\d=2\end{cases}}\)
Ta có 2n + 3 là số lẻ = 2n+3⋮/2
= d= 1
Và ta có được đpcm
chứng minh rằng với mọi số tự nhiên n thì hai số : 2n + 5 và 4n + 12 là 2 số nguyên tố cùng nhau
chứng rằng với mọi số tự nhiên n thì 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau
\(Gọi:d=UCLN\left(2n+3;4n+8\right).Taco\)
\(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)
Vì: 2n+3 là số lẻ nên d là số lẻ
=> d=1. Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau
Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau :
a) 7n + 10 và 5n + 7
b) 2n + 3 và 4n + 8
a) Gọi d là ƯCLN(7n+1;5n+7) => 7n+10 chia hết cho d; 5n+7 chia hết cho d
=>5(7n+10) chia hết cho d; 7(5n+7) chia hết cho d
=>35n+50 chia hết cho d; 35n+49 chia hết cho d
=>(35n+50)-(35n+49) chia hết cho d
=>1 chia hết cho d
=>d=1
=>7n+10 và 5n+7 nguyên tố cùng nhau với mọi n
b) Gọi m là ƯCLN(2n+3;4n+8) => 2n+3 chia hết cho m;4n+8 chia hết cho m
=>2(2n+3) chia hết cho m => 4n+6 chia hết cho m
=>(4n+8)-(4n+6) chia hết cho m
=>2 chia hết cho m
=>m thuộc {1;2}
2n+3 là số lẻ => 2n+3 không chia hết cho 2 => m khác 2
=>m=1
=>đpcm
a) 7n + 10 và 5n + 7
Gọi UCLN (7n + 10;5n + 7) = d
7n + 10 = 35n + 50
5n + 7 = 35n + 49
Ta có:UCLN (35n + 50;35n + 49) = d
UCLN (50 ; 49) = d : d = 1
Vậy 7n + 10 và 5n + 7 là số nguyên tố trùng nhau (ĐPCM)
b) 2n + 3 và 4n + 8
Gọi UCLN (2n + 3;4n + 8) là d
2n + 3
4n + 8 = 2n + 4
Ta có: UCLN (2n + 3;2n + 4)
UCLN (3 ; 4) = d : d = 1
Vậy 2n + 3 và 4n + 8 là hai số nguyên tố trùng nhau (ĐPCM)
Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau :
a) 7n + 10 và 5n + 7 ;
b) 2n + 3 và 4n + 8.
a) Gọi d > 0 \(\in\) ƯC(7n+10;5n+7)
\(\Rightarrow\) d \(\in\) Ư [5.(7n+10) = 35n +50]
và d là ước số của 7(5n+7)= 35n +49
mà (35n + 50) - (35n +49) =1
\(\Rightarrow\) d là ước số của 1 \(\Rightarrow\) d = 1
vậy 7n+10 và 5n+7 nguyên tố cùng nhau.
b) Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
\(\Rightarrow\) d \(\in\) Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
\(\Rightarrow\) d \(\in\) Ư(2) \(\Rightarrow\) d \(\in\) {1,2}
d = 2 không là ước số của số lẻ 2n+3 \(\Rightarrow\) d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.
Vây : 2n + 3 va 4n + 8 nguyên tố cùng nhau
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.