Tìm x
6x3 + 12x = 0
Tìm x
\(2x^3+5x^2-12x=0\)
\(2x^3+5x^2-12x=0\\ \Leftrightarrow x\left(2x^2+5x-12\right)=0\\ \Leftrightarrow x\left[\left(2x^2+8x\right)-\left(3x+12\right)\right]=0\\ \Leftrightarrow x\left[2x\left(x+4\right)-3\left(x+4\right)\right]=0\\ x\left(2x-3\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\\x=-4\end{matrix}\right.\)
2x³ + 5x² - 12x = 0
<=> x(2x² + 5x - 12) = 0
<=> x(2x² + 8x - 3x - 12) = 0
<=> x[2x(x + 4) - 3(x + 4)] = 0
<=> x(x + 4)(2x - 3) = 0
1) x = 0
2) x = -4
3) x = 3/2
Tìm x biết:
x3 – 6x2 + 12x – 8 = 0
\(\Leftrightarrow\left(x-2\right)^3=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Tìm nghiệm của đa thức
3x^3 -12x = 0
\(3x^3-12x=0\)
\(\Rightarrow x\left(3x^2-12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x^2-12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x^2=12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=36\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\\x=-6\end{matrix}\right.\)
Tìm x biết
a 25x2+4y2-10x+12x+10=0
b 3x2+2y2-12x+12y+30=0
a, sửa đề : \(25x^2+4y^2-10x+12y+10=0\)
\(\Leftrightarrow25x^2-10x+1+4y^2+12y+9=0\)
\(\Leftrightarrow\left(5x-1\right)^2+\left(2y+3\right)^2=0\)
Đẳng thức xảy ra khi x = 1/5 ; y = -3/2
b, \(3x^2+2y^2-12x+12y+30=0\)
\(\Leftrightarrow3\left(x^2-4x+4\right)+2\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)
Đẳng thức xảy ra khi x = 2 ; y = -3
\(a)\)
\(25x^2+4y^2-10x+12x+10=0\)
\(\Leftrightarrow\left(5x\right)^2-10x+1+\left(2y\right)^2+12y+9=0\)
\(\Leftrightarrow[\left(5x\right)^2-10x+1+\left(2y\right)^2+12y+9=0\)
\(\Leftrightarrow[\left(5x\right)^2-2.5x.1-1^2]+[\left(2y\right)^2+2.2y.3+3^{20}]=0\)
\(\Leftrightarrow\left(5x-1\right)^2+\left(2y+3\right)^2=0\)
\(\Leftrightarrow\left(5x-1\right)^2=0\Leftrightarrow5x-1=0\Leftrightarrow x=\frac{1}{5}\)
\(\Leftrightarrow\left(2y+3\right)^2=0\Leftrightarrow2y+3=0\Leftrightarrow2y=-3\Leftrightarrow y=\frac{-3}{2}\)
\(b)\)
\(3x^2+2y^2-12x+12y+30=0\)
\(\Leftrightarrow3x^2-12x+12+2y^2+12y+18=0\)
\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)
Mà: \(3\left(x-2\right)^2\ge0\forall x;2\left(y+3\right)^2\ge0\forall y\)
\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)chỉ khi: \(x-2=y+3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=-3\end{cases}}\)
tìm x: 4x^5 - 12x^3 = 0
\(4x^5-12x^3=0\Leftrightarrow4x^3\left(x^2-3\right)=0\Leftrightarrow4x^3\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\)
\(\Leftrightarrow x=0\text{ hoặc }x=\sqrt{3}\text{ hoặc }x=-\sqrt{3}\)
Tìm x:
`8x^3 -12x^2 +23x-21=0`
Pt bậc 3 này ko giải được trong chương trình phổ thông
tìm x,biết:
a) x^3-6x^2+12x-9=0
b) 8x^3+12x^2+6x-26=0
~bạn nào biết thì giúp mk nha,cảm ơn nhiều~
x^3-6^2+12x-8=1
(x-2)^3=1
=>x-2=1
=>x=3
Câu b tương tự nha
Tìm x
a, x\(^2\)+12x+36=0
b, x\(^2\)-1=0
c, 25x\(^2\)-9=0
a: \(x^2+12x+36=0\)
\(\Leftrightarrow\left(x+6\right)^2=0\)
\(\Leftrightarrow x+6=0\)
hay x=-6
b: Ta có: \(x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c: Ta có: \(25x^2-9=0\)
\(\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
Lời giải:
a. $x^2+12x+36=0$
$\Leftrightarrow (x+6)^2=0$
$\Leftrightarrow x+6=0$
$\Leftrightarrow x=-6$
b.
$x^2-1=0$
$\Leftrightarrow (x-1)(x+1)=0$
$\Leftrightarrow x-1=0$ hoặc $x+1=0$
$\Leftrightarrow x=1$ hoặc $x=-1$
c.
$25x^2-9=0$
$\Leftrightarrow (5x)^2-3^2=0$
$\Leftrightarrow (5x-3)(5x+3)=0$
$\Leftrightarrow 5x-3=0$ hoặc $5x+3=0$
$\Leftrightarrow x=\frac{3}{5}$ hoặc $x=-\frac{3}{5}$
Tìm x,y thuộc Z
4xy - 12x + 5y - 63 = 0
4xy - 12x + 5y - 63 = 0
<=> 4x(y - 3) + 5y - 15 - 48 = 0
<=> 4x(y - 3) + 5(y - 3) = 48
<=> (4x + 5)(y - 3) = 48
Lập bảng xét các trường hợp :
4x + 5 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 8 | -8 | 12 | -12 | 24 | -24 | 16 | -16 | 48 | -48 |
y - 3 | 48 | -48 | 24 | -24 | 16 | -16 | 12 | -12 | 8 | -8 | 6 | -6 | 4 | -4 | 2 | -2 | 3 | -3 | 1 | -1 |
x | -1 | | | | | | | | | -2 | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
y | 51 | -45 | 27 | -21 | 19 | -13 | 15 | -9 | 11 | -5 | 9 | -3 | 7 | -1 | 5 | 1 | 6 | 0 | 4 | 2 |
Vậy các cặp (x;y) nguyên là (-1;51) ; (-2;-13)