\(\sqrt{25}X\left(0,4-2\dfrac{1}{2}\right):\left[\left(-2\right)^3\right]\)
Bài 1: Thực hiện phép tính:
\(\sqrt{25}\)x\(\left(0,4-1\dfrac{1}{12}\right)\):\(\left[\left(-2\right)^3x\dfrac{11}{8}\right]\)
\(=5\cdot\left(\dfrac{2}{5}-\dfrac{13}{12}\right):\left[-8\cdot\dfrac{11}{8}\right]\)
\(=5\cdot\dfrac{-41}{60}\cdot\dfrac{-1}{11}=\dfrac{205}{60\cdot11}=\dfrac{41}{132}\)
= 5. (0,4 - 13/12) : -11
= 5. -41/60 : -11
=-41/132
thực hiện phép tính (tính hợp lí nếu có thể)
1) \(\left(-\dfrac{1}{2}\right)^2:\dfrac{1}{4}-2.\left(\dfrac{-1}{2}\right)^3+\sqrt{4}\)
2) \(3-\left(\dfrac{-6}{7}\right)^0+\sqrt{9}:2\)
3) \(\left(-2\right)^3+\dfrac{1}{2}:\dfrac{1}{8}-\sqrt{25}+\left|-64\right|\)
4) \(\left(-\dfrac{1}{2}\right)^4+\left|-\dfrac{2}{3}\right|-2007^0\)
5) \(\dfrac{\left(0,4-\dfrac{2}{9}+\dfrac{2}{11}\right)}{1,4-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-0,25+\dfrac{1}{5}}{1\dfrac{1}{6}-0,875+0,7}\)
6) \(\left[2^3.\left(-\dfrac{1}{2}\right)^3+\dfrac{1}{2}\right]+\left[\dfrac{25}{22}+\dfrac{6}{25}-\dfrac{3}{22}+\dfrac{19}{25}+\dfrac{1}{2}\right]\)
1)(-1/2)^2:1/4-2.(-1/2)^3+căn 4
=1/4:1/4-2.-1/8+2
= 1-(-1/4)+2
=1+1/4+2=13/4
2) 3-(-6/7)^0+căn 9 :2
= 3-1+3:2
=3-1+3/2=7/2
3) (-2)^3+1/2:1/8-căn 25 + |-64|
= -8+4-5+64= 55
4) (-1/2)^4+|-2/3|-2007^0
= 1/16+2/3-1
= -13/48
5) = 178/495:623/495-17/60:119/120
= 2/7-2/7=0
6) [2^3.(-1/2)^3+1/2]+[25/22+6/25-3/22+19/25+1/2]
= [-1+1/2]+[(25/22-3/22)+(6/25+19/25)+1/2]
= -1/2+[1+1+1/2]
= -1/2+5/2=2
Mấy cái dấu chấm đó là nhân nha bn!
1 nhân chia căn bậc hai
a/\(\left(\dfrac{4}{3}\sqrt{3}+\sqrt{2}+\sqrt{3\dfrac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{0,2}\right)\)
b/ \(\left(\dfrac{3x}{2}\sqrt{\dfrac{x}{2y}}-0,4\sqrt{\dfrac{2}{xy}}+\dfrac{1}{3}\sqrt{\dfrac{xy}{2}}\right):\dfrac{4}{15}\sqrt{\dfrac{2x}{3y}}\)
2 Cộng trừ căn bậc hai
a/ \(0,1\sqrt{200}-2\sqrt{0,08}+4\sqrt{0,5}+0,4\sqrt{50}\)
b/ \(\dfrac{2}{3}x\sqrt{9x}+6x\sqrt{\dfrac{x}{4}-x^2}\sqrt{\dfrac{1}{x}}\)
Bài 2:
a: \(=\sqrt{2}-\dfrac{2}{5}\sqrt{2}+2\sqrt{2}+2\sqrt{2}=\dfrac{23}{5}\sqrt{2}\)
(0,5 điểm) Tính:
$\sqrt{25}.\left( 0,4-1\dfrac{1}{2} \right) : \left[ (-2)^3 : \dfrac{8}{11} \right]$.
\(\sqrt{25}.\left(0,4-1\dfrac{1}{2}\right):\left[\left(-2\right)^3:\dfrac{8}{11}\right]\)
\(=5.\left(\dfrac{2}{5}-\dfrac{3}{2}\right):\left(-8:\dfrac{8}{11}\right)\)
\(=5.\left(-\dfrac{11}{10}\right):\left(-11\right)\)
\(=\dfrac{-11}{2}:\left(-11\right)\)
\(=\dfrac{1}{2}\)
\(5\).\(\left(0,4-1,5\right):[-8:\dfrac{8}{11}]\)
=5.-11:-11
5
Rút gọn:
1) \(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}-\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
2) \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
3) \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
4) \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}+\dfrac{x^2-4x-1}{x^2-1}\right).\dfrac{x+2003}{x}\)
5) \(A=\left(\dfrac{5\sqrt{x}}{x-4}-\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\left(2-\sqrt{x}\right)\)
6) \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
Giúp mình với, cần gấp ạ ![]()
2: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
1: Ta có: \(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}-\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
\(=\left(\dfrac{x-5\sqrt{x}-x+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right):\dfrac{25-x-x+9-x+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-5}{\sqrt{x}+5}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-3x+59}\)
\(=\dfrac{-5\left(\sqrt{x}-3\right)}{-3x+59}\)
\(=\dfrac{5\sqrt{x}-15}{3x-59}\)
Rút gọn:
1) \(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
2) \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
3) \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}+\dfrac{x^2-4x-1}{x^2-1}\right).\dfrac{x+2003}{x}\)
4) \(A=\left(\dfrac{5\sqrt{x}}{x-4}-\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\left(2-\sqrt{x}\right)\)
5) \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
Giúp vs ạ ![]()
1: Ta có: \(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}-\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
\(=\left(\dfrac{x-5\sqrt{x}-x+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right):\dfrac{25-x-x+9-x+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-5}{\sqrt{x}+5}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-3x+59}\)
\(=\dfrac{-5\left(\sqrt{x}-3\right)}{-3x+59}\)
\(=\dfrac{5\sqrt{x}-15}{3x-59}\)
2: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
3: Ta có: \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{x-1}\cdot\dfrac{1}{\sqrt{x}}\)
\(=\dfrac{2}{x-1}\)
B2 : Tính :
a, \(\left(\sqrt{x}-3\right)\)\(.\left(\sqrt{x}+2\right)\)
b, \(\left(\sqrt{x}-\sqrt{y}\right).\)\(\left(\sqrt{x}+\sqrt{y}\right)\)
c, \(\left(\sqrt{\dfrac{25}{3}}-\sqrt{\dfrac{49}{3}}+\sqrt{3}\right)\)\(.\sqrt{3}\)
d,\(\left(1+\sqrt{3}-\sqrt{5}\right)\)\(.\left(1+\sqrt{3}+\sqrt{5}\right)\)
a. \(\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=x-3\sqrt{x} +2\sqrt{x}-6=x-\sqrt{x}-6\)
b. \(\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)=x-y\)
c. \(\left(\sqrt{\dfrac{25}{3}}-\sqrt{\dfrac{49}{3}}+\sqrt{3}\right).\sqrt{3}\)
\(=\left(\dfrac{5}{\sqrt{3}}-\dfrac{7}{\sqrt{3}}+\sqrt{3}\right).\sqrt{3}=\dfrac{5}{3}-\dfrac{7}{3}+9=\dfrac{25}{3}\)
d. \(\left(1+\sqrt{3}-\sqrt{5}\right)\left(1+\sqrt{3}+\sqrt{5}\right)\)
\(=\left(1+\sqrt{3}\right)^2-5=1+2\sqrt{3}+3-5=2\sqrt{3}-1\)
\(\dfrac{\sqrt{\dfrac{9}{4}-3^{-1}+2018^0}}{25\%+1\dfrac{1}{4}-1,3}-\dfrac{\left(\dfrac{-1}{2}\right)^2-\sqrt{\dfrac{4}{9}}+0,4}{0,6-\dfrac{2}{3}.\left(\dfrac{-1}{4}-\dfrac{1}{2}\right)}\)
\(A=\dfrac{\sqrt{\dfrac{9}{4}-3^{-1}+2018^0}}{25\%+1\dfrac{1}{4}-1,3}-\dfrac{\left(-\dfrac{1}{2}\right)^2-\sqrt{\dfrac{4}{9}}+0,4}{0,6-\dfrac{2}{3}.\left(-\dfrac{1}{4}-\dfrac{1}{2}\right)}\)
\(A=\dfrac{\sqrt{\dfrac{9}{4}-\dfrac{1}{3}+1}}{\dfrac{1}{4}+\dfrac{5}{4}-\dfrac{13}{10}}-\dfrac{\dfrac{1}{4}-\dfrac{2}{3}+\dfrac{2}{5}}{\dfrac{3}{5}-\dfrac{2}{3}\left(-\dfrac{1}{4}-\dfrac{1}{2}\right)}\)
\(A=\dfrac{\sqrt{\dfrac{35}{12}}}{\dfrac{1}{5}}-\dfrac{-\dfrac{1}{60}}{\dfrac{11}{10}}\)
\(A=\dfrac{5\sqrt{105}}{6}+\dfrac{11}{66}\)
\(A=\dfrac{55\sqrt{105}}{66}+\dfrac{11}{66}\)
\(A=\dfrac{55\sqrt{105}+11}{66}\)
\(\left\{{}\begin{matrix}\left(\sqrt{x}-2y\right)\left(1-\dfrac{1}{2y\sqrt{x}}\right)=3\\\left(x+4y^2\right)\left(1+\dfrac{1}{4xy^2}\right)=25\end{matrix}\right.\)
thực hiện phép tính
a)\(\dfrac{3}{5}\)-\(\dfrac{1}{2}\)\(\sqrt{1\dfrac{11}{25}}\)
b)(5+2\(\sqrt{6}\))(5-2\(\sqrt{6}\))
c)\(\sqrt{\left(2-\sqrt{3}\right)^2}\)+\(\sqrt{4-2\sqrt{3}}\)
d)\(\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)(với x,y>0)
\(a,\dfrac{3}{5}-\dfrac{1}{2}\sqrt{1\dfrac{11}{25}}=\dfrac{3}{5}-\dfrac{1}{2}\sqrt{\dfrac{36}{25}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{\sqrt{6^2}}{\sqrt{5^2}}=\dfrac{3}{5}-\dfrac{1}{2}.\dfrac{6}{5}=\dfrac{3}{5}-\dfrac{6}{10}=\dfrac{3}{5}-\dfrac{3}{5}=0\)
\(b,\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)=5^2-\left(2\sqrt{6}\right)^2=25-2^2.\sqrt{6^2}=25-4.6=25-24=1\)
\(c,\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\\ =\left|2-\sqrt{3}\right|+\sqrt{\sqrt{3^2}-2\sqrt{3}+1}\\ =2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =2-\sqrt{3}+\left|\sqrt{3}-1\right|\\ =2-\sqrt{3}+\sqrt{3}-1\\ =1\)
\(d,\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\left(dk:x,y>0\right)\\ =\dfrac{\left(\sqrt{x^2}.\sqrt{y}+\sqrt{y^2}.\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ =\sqrt{x^2}-\sqrt{y^2}\\ =\left|x\right|-\left|y\right|\\ =x-y\)