Cho điểm I nằm trong hình chữ nhật ABCD sao cho IA=13, IB=8, IC=4. Tính ID
Cho 1 điểm I nằm trong hình chữ nhật ABCD biết: IA=13cm; IB=8cm; IC=4cm. Hỏi ID=?
I là một điểm nằm trong hình chữ nhật ABCD. IA = 13cm, IB = 8cm và IC = 4cm. ID = ...
Cho hình chữ nhật ABCD, biết I là một điểm trong ABCD, IA=4cm, IB=8cm,IC=4cm. Tính độ dài đoạn ID
Xét tam giác vuông IBC có:
\(BC^2=IB^2+IC^2\)
\(\Leftrightarrow BC=\sqrt{IB^2+IC^2}=\sqrt{80}\) cm
Vì ABCD là hình chữ nhật
\(\Rightarrow AD=BC=\sqrt{80}\)
Xét tam giác vuông AID có:
\(AD^2=AI^2+ID^2\)
\(\Rightarrow ID8=\sqrt{AD^2-AI^2}=8cm\)
Cho tứ giác ABCD nội tiếp đường tròn (O;R). Gọi I là giao của AC và BD. (I khác O). Các điểm A', B', C' D' lần lượt trên đoạn thẳng IA,IB,IC,ID dao cho IA'/IA=IB'/IB=IC'/IC=ID'/ID. CMR A', B', C', D' cùng thuộc một đường tròn. Tính bán kính của đường tròn đó theo R
*Không vẽ được hình, bạn thông cảm*
Gọi O' là điểm trên IO sao cho \(IO'=\frac{1}{3}IO\)
Xét \(\Delta\)IAO có: \(\frac{IA'}{IA}=\frac{IO'}{IO}\left(=\frac{1}{3}\right)\Rightarrow O'A'//OA\) (định lý Talet đảo)
Do đó: \(\frac{O'A'}{OA}=\frac{IA'}{IA}=\frac{1}{3}\Rightarrow O'A'=\frac{1}{3}R\)
Cmtt ta được: \(O'B'=\frac{1}{3}R;O'C'=\frac{1}{3}R;O'D'=\frac{1}{3}R\)
I is a point inside the rectangle ABCD. IA = 13 cm, IB = 8 cm and IC = 4 cm. Find ID
Bài 2
Quy ước: tất cả đều viết véc tơ:
* Khai thác giả thiết:
+ IA =2IB <=> IA = 2( AB -AI) <=> IA = -2AB <=> AI = 2AB
+ 3JA + 2JC =0 <=> 3JA + 2(JA+ AC) =0 <=> JA = ( -2/5)AC <=> AJ = (2/5) AC
Chỉ ra được vị trí các điểm I, J:
+ I đối xứng với A qua B ( tức B là trung điểm AI)
+ J nằm trên đoạn AC sao cho AJ = 2/5 AC
* Ta có:
+ GI = GA + AI = GA + 2AB
+ GJ = GA + AJ = GA + (2/5) AC
Suy ra:
GI - 5 GJ = -4 GA + 2(AB - AC) = -4GA + 2CB = -4GA + 2(GB -GC)
= -2GA +4GB ( chỗ này có áp dụng tính chất trọng tâm: GA +GB + GC =0)
Do B là trung điểm của AI => 2GB = GA +GI
Suy ra:
GI - 5 GJ = -2GA + 2GA + 2 GI
=> GI = - 5 GJ
Đẳng thức này suy ra I, J, G thẳng hàng => IJ đi qua G (đpcm)
I is a point inside the rectangle ABCD. IA = 13 cm, IB = 8 cm and IC = 4 cm. Find ID
Cho hình chữ nhật ABCD, AB = 2a, AD = a
Tìm I sao cho IA^2 + IB^2 + ID^2 - 3IC^2 = 10a^2
Cho HCN ABCD. I nằm trong HCN sao cho góc IAD = góc ICD.
cm rằng:
a) góc IDC = góc IBC.
b) SABCD = IA x IC +IB x ID
Cho hình thang ABCD (AB//CD) có I là giao điểm của 2 đường chéo. Chứng minh IC=ID và IA=IB
Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{ICD}=\widehat{IDC}\)
Xét ΔIDC có \(\widehat{ICD}=\widehat{IDC}\)
nên ΔIDC cân tại I
Suy ra: IC=ID
Ta có: IC+IA=AC
ID+IB=BD
mà AC=BD
và IC=ID
nên IA=IB
Xét △ADC và △BDC có
BC = BD
DC chung
AD = BC
⇒ △ ADC = △ BCD ( c - c - c )
⇒ \(\widehat{BDC}=\widehat{ACD}\)
⇒ △ IDC cân tại I
⇒ ID = IC ( đpcm )
Mà AC = BD
⇒ IA = IB ( đpcm )