n - 1 : n+ 3 < chia hết >
Tìm n thuộc N để:
a) n+6 chia hết cho n; 4.n + 5 chia hết cho n; 38-3.n chia hết cho n
b) n+5 chia hết cho n + 1; 3.n + 4 chia hết cho n-1; 2.n + 1 chia hết cho 16-3.n
n + 3 chia hết choi n + 1
n + 1+ 2 chia hết cho n +1
2 chia hế cho n + 1
n + 1 thuộc U(2) = {-2 ; -1 ; 1 ; 2}
n + 1 = -2 =>? n = -3
n + 1= -1 => n = -2
n + 1 = 1 => n = 0
n + 1 = 2 => n = 1
Yễn Nguyễn ơi! Giúp mình với!!:
8-3n chia hết cho n+1.
Yễn Nguyễn có làm được ko?
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
Ta có n-3=n+4-7
6)=>n-4+7 chia hết cho n+4
=>7 chia hết cho n+4
=> n+4 thuộc Ư(7)
=> n+4 thuộc {1, -1,7,-7}
=> n thuộc {-3,-5,3,-11}
Cho A = (n -1) (n-1) (n2-1)(n thuộc Z )1) CM:A chia hết 3
Nếu n chia hết cho 3 => n^2 chia hết cho 3 => A chia hết cho 3
nếu A chia hết cho 3 dư 1 => n-1 chia hết cho A => A chia hết cho 3
Nếu n :3 dư 2 => n+1 chia hết cho 3 => a chia hết cho 3
Vậy A chia hết cho 3 với mọi n
tìm n thuộc n
1) n + 13 chia hết n - 5
2) n+ 3 chia hết n
3) 2n + 9 chia hết n - 3
4) 6n + 9 chia hết n
5) n+4 chia hết n+2
6)n +11 chia hết n -1
7) 6n +9 chia hết 4n - 1
8) 2n + 15 chia hết n+1
Ta có : n+13=(n-5) + 8
Suy ra :(n-5) + 8 chia hết cho n-5
Ta có : ( n-5 ) chia hết cho n-5 mà (n-5 ) + 8 chia hết cho n-5 . Vậy 8 chia hết cho n-5
Suy ra : n-5 thuộc Ư ( 8 )
Suy ra : n-5 thuộc { 1 ;2;4;8}
Suy ra : n thuộc {6;7;9;13}
2 ) ta có : n+3 chia hết n
Mà ta có n chia hết cho n mà n+3 chia hết cho n . Vậy 3 chia hết cho n
Suy ra: n thuộc Ư (3)
Suy ra : n thuộc { 1 ;3 }
3 ) Ta có : 2 . ( n-3 ) = 2n-6
Ta có : 2n-9 = ( 2n-6 ) + 15
Ta có : (2n-6 ) chia hết cho n-3 mà (2n-6 ) + 15 chia hết cho n-3 . Vậy 15 chia hết cho n-3
Suy ra : n-3 thuộc Ư ( 15 )
Suy ra : n-3 thuộc { 1 ;3 ; 5 ; 15 }
Suy ra n thuộc { 4 ; 6 ; 8;18 }
Tìm số tự nhiên n :
1/ n+6 chia hết cho n
2/ n-8 chia hết cho n
3/ 3 nhân n +13 chia hết cho n
4/ 5-2 nhân n chia hết cho n
5/ n+8 chia hết cho n+1
6/ n+10 chia hết cho n+2
7/ 2 nhân n+3 chia hết cho n-2
8/ 3 nhân n+1 chia hết cho 1+2 nhân n
1) Ta có: \(2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
2) Ta có: \(n+2⋮n-3\)
\(\Leftrightarrow n-3+5⋮n-3\)
mà \(n-3⋮n-3\)
nên \(5⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(5\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
Vậy: \(n\in\left\{4;2;8;-2\right\}\)
Tìm n biết :a, n^2+n+1 chia hết cho n+1
b, n^2 +5 chia hết cho n+1
c, 3n+26 chia hết cho n+1
d, n+3 chia hết cho 2n+1
e, n+2 chia hết cho n^2 -3
g, n^2 +3n -3 chia hết cho n-2
Để mình giúp bạn!!
\(n^2+n+1⋮n+1\\ \Rightarrow n\left(n+1\right)+1⋮n+1\\ \Rightarrow n+1\in U\left(1\right)=\left\{1;-1\right\}\\ \Rightarrow n\in\left\{0;-2\right\}\)
\(n^2+5⋮n+1\\ \Rightarrow n^2-1+6⋮n+1\\ \Rightarrow\left(n-1\right)\left(n+1\right)+6⋮n+1\\ \Rightarrow6⋮n+1\\ \Rightarrow n+1\in\text{Ư}\left(6\right)=\left\{1;6;-1;-6\right\}\\ \Rightarrow n=\left\{0;5;-2;-7\right\}\)
\(n+2⋮n^2-3\\ \Rightarrow n^2-3-1⋮n^2-3\\ \Rightarrow1⋮n^2-3\\ \)
bạn giải đc câu nào chưa
Nếu bạn giải đc rồi thì giải hộ mik đc k ? Nha bạn
Cho n € N. CMR:
1) Nếu n không chia hết cho 7 thì n^3+1 chia hết cho 7 hoặc n^3-1 chia hết cho 7
2) n(n^2-1)(3n+3) chia hết cho 12
3) n(n+1)(2n+1) chia hết cho 6
1) Đặt A = n6 - 1 = ( n3 - 1)( n3 + 1) = ( n - 1)( n2 + n + 1)( n +1)(n2 - n + 1)
Nếu n không chia hết cho 7 thì:
Xét nếu n = 7k + 1 thì n - 1 = 7k + 1 - 1 = 7k chia hết cho 7 nên A chia hết cho 7
Nếu n = 7k + 2 thì n2 + n + 1 = (7k + 2)2 + 7k + 2 + 1 = 7(7k2 +3k+1) chia hết cho 7 nên A chia hết cho 7
Tương tự đến trường hợp n = 7k + 6
=> Nếu n không chia hết cho 7 thì n6 - 1 chia hết cho 7
Mà n6 - 1 = (n3 - 1)(n3 + 1)
Do đó: n3 - 1 chia hết cho 7 hoặc n3 - 1 chia hết cho 7
3) n(n + 1)(2n + 1)
= n(n + 1)[(n + 2) + (n - 1)]
= n(n + 1)(n + 2) + n(n + 1)(n - 1)
Vì n(n + 1)(n + 2) là tích của ba số tự nhiên liên tiếp
Nên n(n + 1)(n + 2) chia hết cho 6 (1)
Vì n(n + 1)(n - 1) là tích của 3 số tự nhiên liên tiếp
Nên n(n + 1)(n - 1) chia hết cho 6 (2)
Từ (1), (2) => Đpcm
2)Đề sai. Sửa:
\(n\left(n^2-1\right)\left(3n+6\right)\)\(=3n\left(n-1\right)\left(n+1\right)\left(n+2\right)\)
Theo nguyên lí Dirichle, chắc chắn có 1 số chia hết cho 4.
\(\Rightarrow3n\left(n-1\right)\left(n+1\right)\left(n+2\right)⋮3⋮4=12\)
Vậy ....
tìm số nguyên n sao cho :
1,n^2+2n-4 chia hết cho 11
2,2n^3+n^2+7n+1 chia hết cho 2n -1
3,n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
o l m . v n
4,n^3-2 chia hết cho n-2
5, n^3-3n^2-3n-1 chia hết cho n^2+n+1
6, 5^n-2^n chia hết cho 63