cho tam giác abc có ab=ac trên cạnh ab lấy m trên cạnh ac lấy n sao cho am=an gọi h là trung điểm bc
a) cm tam giác abh= tam giác ach
b)gọi e là giao điểm của ah và mn
cm ah vuông với mn
mn//bc
cho tam giác abc có ab= ac , trên cạnh ab lấy điểm m , trên cạnh ac lấy điểm n sao cho am=an. gọi h là trung điểm của bc
a, chứng minh góc abh = ach
b, gọi e là giao điểm của ah và nm . chứng minh tam giác ame = tam giác ane
c, chứng minh mn // bc
a) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Suy ra: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)
hay \(\widehat{ABH}=\widehat{ACH}\)
b) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔABH=ΔACH(c-c-c)
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
hay \(\widehat{MAE}=\widehat{NAE}\)
Xét ΔAME và ΔANE có
AM=AN(gt)
\(\widehat{MAE}=\widehat{NAE}\)(cmt)
AE chung
Do đó: ΔAME=ΔANE(c-g-c)
c) Ta có: ΔAME=ΔANE(cmt)
nên \(\widehat{AEM}=\widehat{AEN}\)(hai góc tương ứng)
mà \(\widehat{AEM}+\widehat{AEN}=180^0\)(hai góc so le trong)
nên \(\widehat{AEM}=\widehat{AEN}=\dfrac{180^0}{2}=90^0\)
Suy ra: AH⊥MN tại E(1)
Ta có: ΔABH=ΔACH(cmt)
nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
Suy ra: AH⊥BC tại H(2)
Từ (1) và (2) suy ra MN//BC(Đpcm)
cho tam giác ABC có AB=AC .H là trung điểm của BC a, Chứng minh tam giác ABH=ACH b, Chứng minh AH vuống góc BC c, Trên cạnh AB lấy điểm M . Trên cạnh AC lấy điểm N sao cho AM =AN .gọi E là giao điểm của AH và NM .Chúng minh MN song song với BC ( ghi giả thiết kết luận nha )
a: XétΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
XétΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
Cho tam giác ABC có AB=AC, trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho AM=AN. Gọi H là trung điểm của BC.
1/ chứng minh: tam giác ABH= tam giác ACH
2/ gọi E là giao điểm của AH và NM. Chứng minh: tam giác AME= tam giác ANE
3/ chứng minh: MM song song BC
Mong m.n giúp đỡ
Cho tam giác ABC có AB bằng AC,trên cạnh AB lấy điểm M,trên cạnh AC lấy điểm N sao cho AM bằng AN.Gọi H là trung điểm của BC.
a/ Chứng minh:Góc ABH bằng góc ACH
b/ Gọi E là giao điểm của AH và NM.Cứng minh:Tam giác AME bằng Tam giác ANE
c/ Chứng minh:MN song song BC
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{ABH}=\widehat{ACH}\)
a) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Suy ra: ˆABC=ˆACB(hai góc ở đáy)
hay ˆABH=ˆACH
b) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔABH=ΔACH(c-c-c)
Suy ra: ˆBAH=ˆCAH(hai góc tương ứng)
hay ˆMAE=ˆNAE
Xét ΔAME và ΔANE có
AM=AN(gt)
ˆMAE=ˆNAE(cmt)
AE chung
Do đó: ΔAME=ΔANE(c-g-c)
c) Ta có: ΔAME=ΔANE(cmt)
nên ˆAEM=ˆAEN(hai góc tương ứng)
mà ˆAEM+ˆAEN=1800(hai góc so le trong)
nên ˆAHB=ˆAHC=18002=900
Suy ra: AH⊥BC tại H(2)
Từ (1) và (2) suy ra MN//BC(Đpcm)
a) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Suy ra: ˆABC=ˆACB(hai góc ở đáy)
hay ˆABH=ˆACH
b) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔABH=ΔACH(c-c-c)
Suy ra: ˆBAH=ˆCAH(hai góc tương ứng)
hay ˆMAE=ˆNAE
Xét ΔAME và ΔANE có
AM=AN(gt)
ˆMAE=ˆNAE(cmt)
AE chung
Do đó: ΔAME=ΔANE(c-g-c)
c) Ta có: ΔAME=ΔANE(cmt)
nên ˆAEM=ˆAEN(hai góc tương ứng)
mà ˆAEM+ˆAEN=1800(hai góc so le trong)
nên ˆAHB=ˆAHC=18002=900
Suy ra: AH⊥BC tại H(2)
Từ (1) và (2) suy ra MN//BC(Đpcm)
cho tam giác ABC có AB=AC trên cạnh AB lấy điểm M trên cạnh AC lấy điểm N sao cho AM = An. Gọi là trung điểm của BC . a) chưng minh tam giác ABH = tam giác ACH b) Gọi E là giao điểm của AH và NM. chứng minh tam giác AME = tam giác ANE c) chứng minh NM//BC
a: Xét ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
=>ΔABH=ΔACH
b: ΔABC cân tại A có AH là đường trung tuyến
nên AH là phân giác của góc BAC và AH vuông góc BC
Xét ΔAME và ΔANE có
AM=AN
góc MAE=góc NAE
AE chung
=>ΔAME=ΔANE
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
Cho tam giác ABC có AB = AC. Trên cạnh AB lấy M, trên cạnh AC lấy N sao cho AM = AN. Gọi H là trung điểm của BC.
a) Chứng minh góc ABH = góc ACH
b) Gọi E là giao điểm của AH và NM
c) CM : MM// BC
mk chỉ vẽ đc hình thôi
a, Xét \(\Delta ABH\)và \(\Delta ACH\)có
AB=AC (GT)
BH=HC (gt)
AH: chung
\(\Rightarrow\Delta ABH=\Delta ACH\)(c-c-c)
\(\Rightarrow\widehat{ABH}=\widehat{ACH}\) (2 cạnh tương ứng)
Cho tam giác ABC cân tại A. Trên 2 cạnh AB và AC lần lượt lấy hai điểm M và N sao cho AM = AN. Kẻ AH vuông góc với BC, H ∈ BC
a. Chứng minh tam giác ABH = tam giác ACH
b. Chứng minh BN=CM
c. Nếu cho cạnh AH=8cm, AB= 10cm. Tính cạnh BC
a. xét tam giác ABH và tam giác ACH
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
BH = CH ( ABC cân, AH là đường cao cũng là trung tuyến )
Vậy tam giác ABH = tam giác ACH ( c.g.c )
b. xét tam giác vuông BNH và tam giác vuông CNH
BN = CM ( AB = AC ; AM = AN )
BH = CH
Vậy tam giác vuông BNH = tam giác vuông CNH ( cạnh huyền. cạnh góc vuông )
c. áp dụng định lý pitao vào tam giác vuông AHB:
\(AB^2=AH^2+BH^2\)
\(BH=\sqrt{10^2-8^2}=\sqrt{64}=8cm\)
=> BC = BH. 2 = 8.2 =16 cm
Chúc bạn học tốt!!!
a, Xét tam giác ABH và tam giác ACH
^AHB = ^AHC = 900
AB = AC (gt)
AH _ chung
Vậy tam giác ABH = tam giác ACH ( ch - cgv )
b, Xét tam ANB và tam giác AMC có :
^A _ chung
AM = AN(gt)
AB = AC (gt)
Vậy tam giác ANB = tam giác AMC ( c.g.c )
=> BN = CM ( 2 cạnh tương ứng )
c, Xét tam giác ABH vuông tại H, theo định lí Pytago
\(BH=\sqrt{AB^2-AH^2}=6cm\)
Xét tam giác ABC cân tại A có AH là đường cao nên đồng thời AH là đường trung tuyến
=> BC = 2BH = 12 cm
a, ΔABC cân tại A =>AB=AC và ACH=ABH
Xét ΔABH và ΔACH có:
ACH=ABH
AB=AC
AHC=AHB=900
=>ΔABH=ΔACH(cạnh huyền-góc nhọn) (đpcm)
b, Ta có AM+MB=AN+NC và AM=AN
=>MB=NC
Xét ΔBMC và ΔCNB có:
BM=NC
MBC=NCB
BC chung
=>ΔBMC=ΔCNB(c.g.c)
=>BN=CM (đpcm)
c, Xét ΔABH có: AB2=BH2+AH2 (pi-ta-go)
=>BH2=36
=>BH=6(cm)
ΔABC cân tại A có AH là đường cao
=> AH cũng là trung tuyến
=>HB=HC=BC/2
=>BC=2HB=12 (cm)
BÀI 2 : Cho tam giác ABC có AB = AC, trên cạnh AB lấy điểm M, trên cạnh AC
lấy điểm N sao cho AM = AN. Gọi H là trung điểm của BC.
a/ Chứng minh : ABH = ACH.
b/ Gọi E là giao điểm của AH và NM. Chứng minh : AME = ANE
a, Xét tam giác ABH và tam giác ACH ta có :
AB = AC ( gt )
AM = AN ( gt )
AH _ chung
=> tam giác ABH = tam giác ACH ( c.c.c )
Cho tam giác ABC có cạnh AB<AC. Kẻ AM là tia phân giác của góc A(M thuộc BC). Trên cạnh AC lấy điểm N sao cho AN=AB
a)CM tam giác AMB=tam giác AMN
b)Gọi E là giao điểm của AB và MN. CM BE=NC
c)Nối B với N, E với C. CM BN song song với EC
Bài rất hay !
a) Xét tam giác ABM và tam giác ANM có
\(\widehat{BAM}\) = \(\widehat{NAM}\) (Vì AM là phân giác góc A)
AB = AN (gt)
Chung AM
=> Tam giác ABM = Tam giác ANM (c.g.c)
b) Ta có \(\widehat{ABM}\)+\(\widehat{EBE}\) = 180 độ
\(\widehat{ANM}\) + \(\widehat{CNM}\) = 180 độ
mà \(\widehat{ABM}\)=\(\widehat{ANM}\)(Vì tam giác ABM = Tam giác ANM)
=> \(\widehat{EBE}\)= \(\widehat{CNM}\)
Lại có BM = NM (Vì tam giác ABM = Tam giác ANM)
Xét tam giác BME và Tam giác NMC có
\(\widehat{EBE}\) =\(\widehat{CNM}\)
BM = NM
\(\widehat{BME}\) = \(\widehat{NMC}\) (Đối đỉnh)
=> Tam giác BME = Tam giác NMC (c.g.c)
=> BE = NC (2 cạnh tương ứng)
c) Xét tam giác ABN
Có AB = AN (gt) => Tam giác ABN cân
=> Đường phân giác cũng là đường cao => AM vuông góc với BN (1)
Ta có BE = NC (cmt)
AB = AN
mà AE = AB+BE, AC = AN + CN
=> AE = AC
=> Tam giác AEC cân
=> đường phân giác cũng là đường cao => AM Vuông góc với EC (2)
Từ (1), (2) => BN // EC (Cùng vuông góc với AM) - đpcm
Mình vẽ nhầm N thành C trên hình. bạn sửa lại dùm nhé ^^