Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Thị Minh Phương

cho tam giác abc có ab= ac , trên cạnh ab lấy điểm m , trên cạnh ac lấy điểm n sao cho am=an. gọi h là trung điểm của bc 

a, chứng minh góc abh = ach 

b, gọi e là giao điểm của ah và nm . chứng minh tam giác ame = tam giác ane

c, chứng minh mn // bc 

Bùi Thị Minh Phương
2 tháng 7 2021 lúc 10:07

giúp mình bài này với 

 

Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 10:09

a) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

Suy ra: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)

hay \(\widehat{ABH}=\widehat{ACH}\)

b) Xét ΔABH và ΔACH có 

AB=AC(ΔABC cân tại A)

AH chung

BH=CH(H là trung điểm của BC)

Do đó: ΔABH=ΔACH(c-c-c)

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{MAE}=\widehat{NAE}\)

Xét ΔAME và ΔANE có 

AM=AN(gt)

\(\widehat{MAE}=\widehat{NAE}\)(cmt)

AE chung

Do đó: ΔAME=ΔANE(c-g-c)

c) Ta có: ΔAME=ΔANE(cmt)

nên \(\widehat{AEM}=\widehat{AEN}\)(hai góc tương ứng)

mà \(\widehat{AEM}+\widehat{AEN}=180^0\)(hai góc so le trong)

nên \(\widehat{AEM}=\widehat{AEN}=\dfrac{180^0}{2}=90^0\)

Suy ra: AH⊥MN tại E(1)

Ta có: ΔABH=ΔACH(cmt)

nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

Suy ra: AH⊥BC tại H(2)

Từ (1) và (2) suy ra MN//BC(Đpcm)


Các câu hỏi tương tự
Trương Vân Anh
Xem chi tiết
Susunguyễn
Xem chi tiết
Lý Kim Khánh
Xem chi tiết
Nguyễn Hữu Tuân
Xem chi tiết
Nguyễn Quỳnh Anh
Xem chi tiết
cao duong tuan
Xem chi tiết
Chi thối
Xem chi tiết
le van nam
Xem chi tiết
quách anh thư
Xem chi tiết