Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Nguyễn Việt Lâm
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Lizy
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 lúc 22:25

Biểu thức này có vẻ chỉ tìm được min chứ ko tìm được max:

Min:

\(P^2=a+b+c+a^3b^3+b^3c^3+c^3a^3+2\sqrt{\left(a+b^3c^3\right)\left(b+c^3a^3\right)}+2\sqrt{\left(a+b^3c^3\right)\left(c+a^3b^3\right)}+2\sqrt{\left(b+c^3a^3\right)\left(c+a^3b^3\right)}\)

\(P^2\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\ge a+b+c=2\)

\(\Rightarrow P\ge\sqrt{2}\)

\(P_{min}=\sqrt{2}\) khi \(\left(a;b;c\right)=\left(0;0;2\right)\) và các hoán vị

phan thị hảo
Xem chi tiết
Lee Suho
Xem chi tiết
Nguyễn Khánh Triều
Xem chi tiết
pro
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 2 2022 lúc 9:36

\(a^3+a^3+1\ge3\sqrt[3]{a^3.a^3.1}=3a^2\)

Tương tự: \(2b^3+1\ge3b^2\) ; \(2c^3+1\ge3c^2\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(a^2+b^2+c^2\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(A_{min}=3\) khi \(a=b=c=1\)

Lại có: \(\left\{{}\begin{matrix}a;b;c\ge0\\a^2+b^2+c^2=3\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le\sqrt{3}\)

\(\Rightarrow a^2\left(a-\sqrt{3}\right)\le0\Rightarrow a^3\le\sqrt{3}a^2\)

Tương tự: \(b^3\le\sqrt{3}b^2\) ; \(c^3\le\sqrt{3}c^2\)

\(\Rightarrow a^3+b^3+c^3\le\sqrt{3}\left(a^2+b^2+c^2\right)=3\sqrt{3}\)

\(A_{max}=3\sqrt{3}\) khi \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và các hoán vị

Hoàng Việt Hà
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 9 2020 lúc 14:48

\(M=\sqrt{\left(a+\frac{1}{2}\right)^2+\left(\frac{\sqrt{15}}{2}\right)^2}+\sqrt{\left(b+\frac{1}{2}\right)^2+\left(\frac{\sqrt{15}}{2}\right)^2}+\sqrt{\left(c+\frac{1}{2}\right)^2+\left(\frac{\sqrt{15}}{2}\right)^2}\)

\(M\ge\sqrt{\left(a+b+c+\frac{3}{2}\right)^2+\left(\frac{3\sqrt{15}}{2}\right)^2}=3\sqrt{6}\)

\(M_{min}=3\sqrt{6}\) khi \(a=b=c=1\)

\(M_{max}\) ko tồn tại

Khách vãng lai đã xóa
Quân Bùi Minh
Xem chi tiết
Lê Nhật Khôi
5 tháng 2 2018 lúc 20:30

Sử dụng bất đẳng thức Cauchy để tìm. 

Thắng Nguyễn
Xem chi tiết