Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Huyền
Xem chi tiết
tthnew
18 tháng 8 2019 lúc 8:34

By Cauchy-Schwarz, we have:

\(VT\ge\frac{\left(a^3+b^3+c^3\right)^2}{2\left(a^3+b^3+c^3\right)+a^2b+b^2c+c^2a}\)

We will prove: \(a^2b+b^2c+c^2a\le a^3+b^3+c^3\)

\(\Leftrightarrow a^2b+b^2c+c^2a+3abc\le a^3+b^3+c^3+3abc\)

By Schur, we have: \(RHS\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(a\right)\)

So we're only need to prove: \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\ge a^2b+b^2c+c^2a+3abc\)

\(\Leftrightarrow ab^2+bc^2+ca^2\ge3abc\)

It is true by AM-GM ineq', so we have Q.E.D.

P/s: Em thử giải bài này bằng tiếng Anh (để tự luyện kĩ năng tiếng anh, tí em giải lại theo tiếng việt)

tthnew
18 tháng 8 2019 lúc 8:35

Ấy nhầm:V

By Schur, we have \(RHS\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

So we're only need to prove \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\ge a^2b+b^2c+c^2a\)

Còn lại y chang:v

tthnew
18 tháng 8 2019 lúc 8:42

Làm màu bằng tiếng anh và cái kết...:V (nãy làm nhầm, phải sửa lại đó)

Áp dụng BĐT Cauchy-Schwarz dạng Engel,ta có:

\(VT\ge\frac{\left(a^3+b^3+c^3\right)^2}{2\left(a^3+b^3+c^3\right)+a^2b+b^2c+c^2a}\)

Ta sẽ chứng minh \(a^2b+b^2c+c^2a\le a^3+b^3+c^3\) (để từ đó suy ra đpcm)

Thật vậy, thêm 3abc vào hai vế, BĐT cần chứng minh tương đương:

\(a^3+b^3+c^3+3abc\ge a^2b+b^2c+c^2a+3abc\).

Áp dụng BĐT Schur, \(VT=a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

Do đó ta chỉ cần chứng minh \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\ge a^2b+b^2c+c^2a+3abc\)

Hay \(ab^2+bc^2+ca^2\ge3abc\). BĐT này đúng theo AM-GM

Phạm Bá Tâm
Xem chi tiết
Nguyễn Đăng Nhân
15 tháng 2 2022 lúc 20:00

Sử dụng bất đẳng thức Bunhiacopxki dạng phân thức và khi đó ta được:

\(\frac{a^5}{a^2+ab+b^2}+\frac{b^5}{b^2+bc+c^2}+\frac{c^5}{c^2+ca+a^2}\ge\)

\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\)

\(\Rightarrow\)Ta cần chỉ ra được:

\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\ge\frac{a^3+b^3+c^3}{3}\)

Hay: \(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)

Dễ thấy: \(a^3+b^3\ge ab\left(a+b\right);b^3+c^3\ge bc\left(b+c\right);c^3+a^3\ge ca\left(c+a\right)\)

Cộng theo vế các bất đẳng thức trên ta được:

\(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)

Vậy bất đẳng thức đã được chứng minh.

Khách vãng lai đã xóa
Itachi Uchiha
Xem chi tiết
Thắng Nguyễn
19 tháng 5 2017 lúc 14:45

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

FL.Hermit
9 tháng 8 2020 lúc 9:26

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

Khách vãng lai đã xóa
FL.Hermit
9 tháng 8 2020 lúc 9:45

Đặt: \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)

=>     \(P=\frac{xy}{z^2+3xy}+\frac{yz}{x^2+3yz}+\frac{zx}{y^2+3zx}\)

=>     \(3P=\frac{3xy}{z^2+3xy}+\frac{3yz}{x^2+3yz}+\frac{3zx}{y^2+3zx}=1-\frac{z^2}{z^2+3xy}+1-\frac{x^2}{x^2+3yz}+1-\frac{y^2}{y^2+3zx}\)

Ta sẽ CM: \(3P\le\frac{9}{4}\)<=> Cần CM: \(\frac{x^2}{x^2+3yz}+\frac{y^2}{y^2+3zx}+\frac{z^2}{z^2+3xy}\ge\frac{3}{4}\)

Có:    \(VT\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

Ta sẽ CM: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{3}{4}\)

<=> \(4\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(4\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(x^2+y^2+z^2\ge xy+yz+zx\)

Mà đây lại là 1 BĐT luôn đúng => \(3P\le\frac{9}{4}\)=> \(P\le\frac{3}{4}\)

Vậy P max \(=\frac{3}{4}\)<=> \(a=b=c\)

Khách vãng lai đã xóa
bach nhac lam
Xem chi tiết
Nguyễn Huy Thắng
19 tháng 11 2019 lúc 20:42

a)\(VT=\sum_{cyc}\frac{ab^3+ab^2c+a^2bc}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\frac{\sum_{cyc}\left(ab^3+ab^2c+a^2bc\right)}{\left(ab+bc+ca\right)^2}\)

\(=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)\(\le\frac{\sum_{cyc}ab\left(a^2+b^2\right)+abc\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}\)

\(=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}=VP\)

Khách vãng lai đã xóa
Nguyễn Huy Thắng
19 tháng 11 2019 lúc 20:49

b thiếu đề

Khách vãng lai đã xóa
bach nhac lam
19 tháng 11 2019 lúc 12:37

@tth_new, @Nguyễn Việt Lâm, @No choice teen, @Akai Haruma

giúp e vs ạ! Cần gấp

Thanks nhiều

Khách vãng lai đã xóa
Phương Tuyết
Xem chi tiết
huyen vu
Xem chi tiết
Hoàng Anh Tú
4 tháng 12 2015 lúc 20:43

Ta có: BĐT tương đương

∑3a33(a2+b2)+(a−b)2≥a+b+c2⇔∑(a−3b2a+a(a−b)23(a2+b2)+(a−b)2)≥a+b+c2⇔∑3b2a+a(a−b)23(a2+b2)+(a−b)2≤a+b+c2⇔∑b2(1−6ab3(a2+b2)+(a−b)2)−∑a(a−b)23(a2+b2)+(a−b)2≥0⇔∑(a−b)2(2b−a3(a2+b2)+(a−b)2)≥0

TH1: Giả sử a≥b≥c

Ta dễ dàng chứng minh được (a−c)Sb+(a−b)Sc≥0,(a−c)Sb+(b−c)Sa≥0,do Sa+Sc≥0,mà a-c ≥a−b nên  (a−c)Sb+(a−b)Sc≥0,còn(a−c)Sb+(b−c)Sa≥0 ⇔(2ab+2c2+4ac−5bc)(ab−c2)≥0,đúng theo giả thiết.Đây là tiêu chuẩn 4 nên ta có đ.p.c.m

TH2:TH này khó hơn chút,giả sử a≥c≥b

Ta có ngay Sa,Sb≥0

Chỉ cần chứng minh Sc+Sa≥0⇔2abc+2b3+4bc2+2a2c+2b2c≥ab2+2ac2+2a2b+3abc

Lại có 2abc+2a2c≥2ac2+2a2b và a≥2b⇒2a2c≥b2+3abc⇒ nên suy ra Sa+Sc≥0,theo tiêu chuẩn 1 ta có đ.p.c.m

Từ đây chứng minh được bài toán,đẳng thức xảy ra khi và chỉ khi a=b=c

Lê Châu Linh
Xem chi tiết
Lê Châu Linh
23 tháng 11 2017 lúc 17:06

chứng minh \(\sqrt{2x+1}\)là số vô tỉ

Leonah
Xem chi tiết
Võ Văn Tấn
Xem chi tiết