Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Bảo Hân
Xem chi tiết

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

Nguyễn Đức Trí
1 tháng 8 2023 lúc 9:29

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

kevin
Xem chi tiết
.
10 tháng 7 2021 lúc 18:16

Ta có: `A = 1 + 4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6 + 4^7 + 4^8`

`= (1 + 4 + 4^2) + (4^3 + 4^4 + 4^5) + (4^6 + 4^7 + 4^8)`

`= 21 + 4^3 (1 + 4 + 4^2) + 4^6 (1 + 4 + 4^2)`

`= 21 + 4^3 . 21 + 4^6 . 21`

`= 21 (1 + 4^3 + 4^6)`

Vì \(21\left(1+4^3+4^6\right)⋮3\) nên \(A⋮3\)

Nguyễn Hà Minh Nghĩa
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2021 lúc 0:04

Đề sai rồi bạn

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 11 2019 lúc 4:39

D = 1 + 4 + 4 2 + 4 3 + . . . + 4 58 + 4 59

=  1 + 4 + 4 2 +  4 3 + 4 4 + 4 5 + ... +  4 57 + 4 58 + 4 59

=  1 + 4 + 4 2 +  4 3 . 1 + 4 + 4 2 + ... +  4 57 . 1 + 4 + 4 2

=  21 + 21 . 4 3 + . . . + 21 . 4 57 ⋮ 21

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 2 2018 lúc 5:50

Nguyễn Ngọc Kim Khánh
Xem chi tiết
DanAlex
21 tháng 6 2017 lúc 21:29

a) Ta có:

\(7^{2006}-7^{2005}+7^{2004}\)

\(=7^{2004}\left(7^2-7+1\right)\)

\(=7^{2004}\times43\)

\(\Rightarrow7^{2006}-7^{2005}+7^{2004}\)chia hết cho 43 (vì có chứa thừa số 43)

b) Ta có:

\(32^{17}+16^{21}-2^{82}\)

\(=\left(2^5\right)^{17}+\left(2^4\right)^{21}-2^{82}\)

\(=2^{85}+2^{84}-2^{82}\)

\(=2^{82}\left(2^3+2^2-1\right)=2^{82}\times11=2^{80}\times2^2\times11\)

\(=2^{80}\times44\)

\(\Rightarrow32^{17}+16^{21}-2^{82}\)chia hết cho 44 (vì có chứa thừa số 44)

Nguyễn Hà Minh Nghĩa
Xem chi tiết
❖ Khang/GD❄ 『ʈєɑɱ❖Hoàng...
18 tháng 12 2021 lúc 16:59

undefined

NGUYỄN THỊ NGÂN THƯỜNG
Xem chi tiết
Lưu Nguyễn Hà An
7 tháng 1 2024 lúc 15:02

viết dấu + cho nhanh, bạn!

A = 1 + 4 + 42 + 43 + ... + 42021

A = 40 + 41 + 42 + 43 +...+ 42021

Xét dãy số 0; 1; 2; 3;...; 2021

Dãy số trên có số số hạng là:

(2021 - 0) : 1 + 1 = 2022

Vậy A có 2022 số hạng

vì 2022 : 3 = 674

Vậy ta nhóm 3 số hạng liên tiếp của A thành một nhóm thì khi đó

A = (1 + 4 + 42) + (43 + 44 + 45) +...+ (42019 + 42020 + 42021)

A = (1 + 4 + 16) + 43.(1 + 4 + 42) + ... +42019.(1 + 4 + 42)

A = 21 + 43.21 +... + 42019.21

A = 21.(1 + 43 + ... + 42019

21 ⋮ 21 ⇒ 21.(1 + 43 + ...+ 42019) ⋮ 21 ⇒ A ⋮ 21 (đpcm)

Lưu Nguyễn Hà An
7 tháng 1 2024 lúc 15:18

Giải thích các bước giải:

 

A = 1 + 4 + 42 + 43 + ... + 42021

A = 40 + 41 + 42 + 43 +...+ 42021

Xét dãy số 0; 1; 2; 3;...; 2021

Dãy số trên có số số hạng là:

(2021 - 0) : 1 + 1 = 2022

Vậy A có 2022 số hạng

vì 2022 : 3 = 674

Vậy ta nhóm 3 số hạng liên tiếp của A thành một nhóm thì khi đó ta sẽ có

 

A = (1 + 4 + 42) + (43 + 44 + 45) +...+ (42019 + 42020 + 42021)

 

A = (1 + 4 + 16) + 43.(1 + 4 + 42) + ... +42019.(1 + 4 + 42)

 

A = 21 + 43.21 +... + 42019.21

 

A = 21.(1 + 43 + ... + 42019) 

 

21 ⋮ 21 ⇒ 21.(1 + 43 + ...+ 42019) ⋮ 21 ⇒ A ⋮ 21 (đpcm)

 

Vậy ta có thể biết A có thể chia hết cho 21 qua: 1+4+42+43+...+42021

 

Nguyễn Thị Hải Anh
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 12 2021 lúc 22:00

\(S=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{98}+4^{99}\right)\\ S=\left(1+4\right)+4^2\left(1+4\right)+...+4^{98}\left(1+4\right)\\ S=\left(1+4\right)\left(1+4^2+...+4^{98}\right)=5\left(1+4^2+...+4^{98}\right)⋮5\)

Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 22:01

\(S=\left(1+4\right)+...+4^{98}\left(1+4\right)\)

\(=5\left(1+...+4^{98}\right)⋮5\)