\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\) với x>0 x\(\ne0\)
Rút gọn:
1) \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\) với x >1
2) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\) với x ≠ 4, x ≠16, x >0
a: Ta có: \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-\left(2\sqrt{x}+1\right)+1\)
\(=x+\sqrt{x}-2\sqrt{x}-1+1\)
\(=x-\sqrt{x}\)
b: Ta có: \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}+\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)
\(=\dfrac{x-4+5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
P=(\(\dfrac{x-2}{x+2\sqrt{x}}\)+\(\dfrac{1}{\sqrt{x+2}}\)).\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) với x >0 và x≠1
A=(\(\dfrac{2}{\sqrt{x}-2}\)+\(\dfrac{3}{2\sqrt{x+1}}\)-\(\dfrac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\)):\(\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\) với x > 0 và x≠4
A=\(\dfrac{x+1-2\sqrt{x}}{\sqrt{x-1}}\)+\(\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\) với x≥0 và x≠1
V=(\(\dfrac{1}{\sqrt{x}+2}\)+\(\dfrac{1}{\sqrt{x}-2}\))\(\dfrac{\sqrt{x}+2}{\sqrt{x}}\) với x>0 và x≠4
A=(\(\dfrac{1}{x-1}\)+\(\dfrac{3\sqrt{x}+5}{x\sqrt{x}-x-\sqrt{x}+1}\))(\(\dfrac{\left(\sqrt{x}+1\right)^2}{4\sqrt{x}}\)-1)
P=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}\)+\(\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}\)+\(\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)
MỌI NGƯỜI GIÚP ĐỠ MÌNH RÚT GỌN MẤY BIỂU THỨC NÀY VỚI Ạ . EM XIN CẢM ƠN
a: \(P=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b: \(=\dfrac{2\left(2\sqrt{x}+1\right)+3\left(\sqrt{x}-2\right)-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}\)
\(=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)
B = \(\left(\dfrac{x}{\sqrt{x}-1}+\dfrac{2x-\sqrt{x}}{\sqrt{x}-x}\right)\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right)\)với (x>0;x\(\ne\)1)
\(B=\left(\dfrac{x}{\sqrt{x}-1}+\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}\right).\left(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\\ =\left(\dfrac{x}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(1-\sqrt{x}\right)}\right).\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\\ =\left(\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\right).\left(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right)\\ =\left(\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\right).\left(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right)\\ =\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\right).\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\\ =\dfrac{1}{\sqrt{x}}=\dfrac{\sqrt{x}}{x}\)
1) Trong các đẳng thức sau, đẳng thức nào đúng
a) \(x\sqrt{2}=\sqrt{2x}\)
b) \(x\sqrt{2}=\sqrt{2x^2}\) với x2 > 0
c) \(x\sqrt{\dfrac{2}{x}}=\sqrt{2x^2}\)
d) \(x\sqrt{\dfrac{2}{x}}=-\sqrt{2x}\)
2) Với x > y > 0 thì biểu thức \(\dfrac{1}{y-x}\sqrt{2x^2.\left(x-y\right)^2}\) được rút gọn là
1. không đáp án đúng
2.\(\dfrac{1}{y-x}\sqrt{2x^2\left(x-y\right)^2}=\dfrac{-1}{x-y}x\left(x-y\right)\sqrt{2}\left(vì>y>0\right)=-x\sqrt{2}\)
Rút gọn biểu thức:
1, \(B=\left(\dfrac{x.\sqrt{x}+x+\sqrt{x}}{x.\sqrt{x}-1}-\dfrac{\sqrt{x}+3}{1-\sqrt{x}}\right).\dfrac{x-1}{2x+\sqrt{x}-1}\)với x>-0, x khác 1, x khác \(\dfrac{1}{4}\)
2, \(A=\dfrac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{x-1}\) với x\(\ge\)0:x\(\ne\)0
rút gọn biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}-\dfrac{2x-\sqrt{x}-3}{x-9}\)với x≥0;x≠9
Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}-\dfrac{2x-\sqrt{x}-3}{x-9}\)
\(=\dfrac{x-3\sqrt{x}+2x-6\sqrt{x}-\sqrt{x}+3-2x+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-9\sqrt{x}+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
1)so sánh 2 số sau M=\(\sqrt{18}-\sqrt{8}\) và N=\(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)
2)cho biểu thức A=\((\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}):(\dfrac{x-4}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}})\) với x>0,\(x\ne4\),\(x\ne9\)
câu 2 rút gọn A và tìm các giá trị nguyên của x để A nhận giá trị âm
1) So sánh:
N = \(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-\left(\sqrt{5}-1\right)=1\)
M = \(\sqrt{18}-\sqrt{8}\)
\(=3\sqrt{2}-2\sqrt{2}\)
\(=\sqrt{2}\)
Ta có: \(1=\sqrt{1}\)
Mà 1 < 2
\(\Rightarrow\sqrt{1}< \sqrt{2}\)
Hay 1 \(< \sqrt{2}\)
Vậy N < M
2) Với \(x>0;x\ne4;x\ne9\), ta có:
A = \(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{x-4}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\left[\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]\)
\(=\dfrac{x-3\sqrt{x}-2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-4-2\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x-3}\right)}\)
\(=\dfrac{-x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-2\sqrt{x}+2}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-2\sqrt{x}+2}\)
\(=\dfrac{-x}{x-2\sqrt{x}+2}\)
Rút gọn \(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\) với x>0.x khác 9 và 25
\(=\dfrac{3\sqrt{x}-x+2x}{9-x}:\dfrac{\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{-\sqrt{x}+5}\)
\(=\dfrac{x}{\sqrt{x}-5}\)
\(A=\dfrac{x\sqrt{2}}{2\sqrt{x}+x\sqrt{2}}+\dfrac{\sqrt{2x}-2}{x-2}\)
Với x > 0 ,x # 2
\(M=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)
Với a > 0 ,a # 4
Rút gọn A,M :
a: \(A=\dfrac{x\sqrt{2}}{x\sqrt{2}\left(\sqrt{x}+\sqrt{2}\right)}+\dfrac{\sqrt{2}\left(\sqrt{x}-\sqrt{2}\right)}{x-2}\)
\(=\dfrac{1}{\sqrt{x}+\sqrt{2}}+\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{2}}=\dfrac{\sqrt{x}+1}{\sqrt{x}+\sqrt{2}}\)
b: \(M=\left(\dfrac{\sqrt{a}+a}{\sqrt{a}-2}\right)\cdot\dfrac{\left(\sqrt{a}-2\right)^2}{\sqrt{a}+1}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\cdot\left(\sqrt{a}-2\right)=\sqrt{a}\left(\sqrt{a}-2\right)\)
\(A=\dfrac{x\sqrt{2}}{2\sqrt{x}+x\sqrt{2}}+\dfrac{\sqrt{2x}-2}{x-2}\)
\(=\dfrac{\sqrt{x}.\sqrt{2x}}{\sqrt{2x}\left(\sqrt{x}+\sqrt{2}\right)}+\dfrac{\sqrt{2}\left(\sqrt{x}-\sqrt{2}\right)}{\left(\sqrt{x}-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{2}}+\dfrac{\sqrt{2}}{\sqrt{x}+\sqrt{2}}=1\)
\(M=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)
\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)
\(=\dfrac{\sqrt{a}+a}{\sqrt{a}-2}.\dfrac{\left(\sqrt{a}-2\right)^2}{\sqrt{a}+1}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}-2}.\dfrac{\left(\sqrt{a}-2\right)^2}{\sqrt{a}+1}\)
\(=\sqrt{a}\left(\sqrt{a}-2\right)\)
- Tìm x, biết :
a) \(\dfrac{\sqrt{2+x}+\sqrt{2-x}}{\sqrt{2+x}-\sqrt{2-x}}=\dfrac{2}{x}\left(-2\le x\le2\right)\left(x\ne0\right)\)
b) \(\dfrac{1}{x+\sqrt{1+x^2}}+\dfrac{1}{x-\sqrt{1+x^2}}+2=0\)