Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
to tien cuong
Xem chi tiết
Huy Hoàng
8 tháng 7 2018 lúc 13:08

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

Tây Ẩn
Xem chi tiết
Nguyễn Thanh Hải
2 tháng 3 2021 lúc 20:09

Bài dài quá, lần sau chia nhỏ câu hỏi nhé!!!!!

Mỹ Hằng Nguyễn Thị
12 tháng 9 2021 lúc 17:15

đúng vậy

Khách vãng lai đã xóa
nguyenminhanh
Xem chi tiết
Vũ Đỗ Việt Cường
27 tháng 11 2021 lúc 9:30

lên google

Khách vãng lai đã xóa
Giang
Xem chi tiết
quang
Xem chi tiết
Phạm Thành Đông
7 tháng 3 2021 lúc 21:14

\(\frac{1-x}{1+x}+3=\frac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\)

\(\Leftrightarrow\frac{1-x}{x+1}+\frac{3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)

\(\Leftrightarrow\frac{1-x+3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)

\(\Rightarrow1-x+3\left(x+1\right)=2x+3\)

\(\Leftrightarrow1-x+3x+3=2x+3\)

\(\Leftrightarrow2x+4=2x+3\)

\(\Leftrightarrow0x=-1\)(vô nghiệm)

Vậy phương trình vô nghiệm.

Khách vãng lai đã xóa
Phạm Thành Đông
7 tháng 3 2021 lúc 21:28

\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2-10}{2x-3}\left(ĐKXĐ:x\ne\frac{3}{2}\right)\)

\(\Leftrightarrow\frac{x^2+4x+4}{2x-3}-\frac{2x-3}{2x-3}=\frac{x^2-10}{2x-3}\)

\(\Leftrightarrow\frac{x^2+4x+4-2x+3}{2x-3}=\frac{x^2-10}{2x-3}\)

\(\Rightarrow x^2+4x+4-2x+3=x^2-10\)

\(\Leftrightarrow2x+7=-10\)

\(\Leftrightarrow2x=-17\)

\(\Leftrightarrow x=\frac{-17}{2}\)(thỏa mãn ĐKXĐ)

Vậy phương trình có nghiệm duy nhất : \(x=\frac{-17}{2}\)

Khách vãng lai đã xóa
Quỳnh Anh
8 tháng 3 2021 lúc 21:28

Trả lời:

a, \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)\(\left(đkxđ:x\ne-1\right)\)

\(\Leftrightarrow\frac{1-x+3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)

\(\Rightarrow1-x+3x+3=2x+3\)

\(\Leftrightarrow4+2x=2x+3\)

\(\Leftrightarrow2x-2x=3-4\)

\(\Leftrightarrow0x=-1\)(không thỏa mãn)

Vậy \(S=\varnothing\)

b, \(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2-10}{2x-3}\)\(\left(đkxđ:x\ne\frac{3}{2}\right)\)

\(\Leftrightarrow\frac{\left(x+2\right)^2-\left(2x-3\right)}{2x-3}=\frac{x^2-10}{2x-3}\)

\(\Rightarrow x^2+4x+4-2x+3=x^2-10\)

\(\Leftrightarrow x^2+2x+7=x^2-10\)

\(\Leftrightarrow x^2+2x-x^2=-10-7\)

\(\Leftrightarrow2x=-17\)

\(\Leftrightarrow x=\frac{-17}{2}\)(tm)

Vậy \(S=\left\{\frac{-17}{2}\right\}\)

c, \(\frac{5x-2}{2-2x}+\frac{2x-1}{2}=1+\frac{x^2+x-3}{x-1}\)\(\left(đkxđ:x\ne1\right)\)

\(\Leftrightarrow\frac{2-5x}{2x-2}+\frac{2x-1}{2}=1+\frac{x^2+x-3}{x-1}\)

\(\Leftrightarrow\frac{2-5x}{2\left(x-1\right)}+\frac{2x-1}{2}=1+\frac{x^2+x-3}{x-1}\)

\(\Leftrightarrow\frac{2-5x}{2\left(x-1\right)}+\frac{\left(2x-1\right)\left(x-1\right)}{2\left(x-1\right)}=\frac{2\left(x-1\right)}{2\left(x-1\right)}+\frac{2\left(x^2+x-3\right)}{2\left(x-1\right)}\)

\(\Rightarrow2-5x+2x^2-3x+1=2x-2+2x^2+2x-6\)

\(\Leftrightarrow2x^2-8x+3=2x^2+4x-8\)

\(\Leftrightarrow2x^2-8x-2x^2-4x=-8-3\)

\(\Leftrightarrow-12x=-13\)

\(\Leftrightarrow x=\frac{13}{12}\)(tm)

Vậy \(S=\left\{\frac{13}{12}\right\}\)

Khách vãng lai đã xóa
Tây Ẩn
Xem chi tiết
Akai Haruma
2 tháng 3 2021 lúc 19:37

Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn. 

nguyenvietquang
4 tháng 3 2021 lúc 16:33

x^2+2x-3/3+2x/4=x^2/3

Nguyên Phương
Xem chi tiết
Akai Haruma
4 tháng 9 2023 lúc 17:18

Bạn nên viết đề bằng công thức toán và ghi đầy đủ yêu cầu đề để mọi người hiểu đề của bạn hơn nhé.

Sỹ Tiền
Xem chi tiết
HT.Phong (9A5)
31 tháng 7 2023 lúc 6:15

p) \(\left(9-x\right)\left(x^2+2x-3\right)\)

\(=9\left(x^2+2x-3\right)-x\left(x^2+2x-3\right)\)

\(=9x^2+18x-27-x^3-2x^2+3x\)

\(=-x^3+7x^2+21x-27\)

n) \(\left(-x+3\right)\left(x^2+x+1\right)\)

\(=-x\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)

\(=-x^3-x^2-x+3x^2+3x+3\)

\(=-x^2+2x^2+2x+3\)

o) \(\left(-6x+\dfrac{1}{2}\right)\left(x^2-4x+2\right)\)

\(=-6x\left(x^2-4x+2\right)+\dfrac{1}{2}\left(x^2-4x+2\right)\)

\(=-6x^3+24x^2-12x+\dfrac{1}{2}x^2-2x+1\)

\(=-6x^3+\dfrac{49}{2}x^2-14x+1\)

q) \(\left(6x+1\right)\left(x^2-2x-3\right)\)

\(=6x\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)

\(=6x^3-12x^2-18x+x^2-2x-3\)

\(=6x^3-11x^2-20x-3\)

r) \(\left(2x+1\right)\left(-x^2-3x+1\right)\)

\(=2x\left(-x^2-3x+1\right)+\left(-x^2-3x+1\right)\)

\(=-2x^3-6x^2+2x-x^2-3x+1\)

\(=-2x^3-7x^2-x+1\)

u) \(\left(2x-3\right)\left(-x^2+x+6\right)\)

\(=2x\left(-x^2+x+6\right)-3\left(-x^2+x+6\right)\)

\(=-2x^3+2x^2+12x+3x^2-3x-18\)

\(=-2x^3+5x^2+9x-18\)

s) \(\left(-4x+5\right)\left(x^2+3x-2\right)\)

\(=-4x\left(x^2+3x-2\right)+5\left(x^2+3x-2\right)\)

\(=-4x^3-12x^2+8x+5x^2+15x-10\)

\(=-4x^3-7x^2+23x-10\)

v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4x^3\right)\)

\(=-\dfrac{1}{2}x\left(2x+6-4x^3\right)+3\left(2x+6-4x^3\right)\)

\(=-x^2-3+2x^4+6x+18-12x^3\)

\(=2x^4-12x^3-x^2+6x+15\)

Nguyễn Lê Phước Thịnh
30 tháng 7 2023 lúc 22:55

p: (-x+9)(x^2+2x-3)

=-x^3-2x^2+3x+9x^2+18x-27

=-x^3+7x^2+21x-27

n: (-x+3)(x^2+x+1)

=-x^3-x^2-x+3x^2+3x+3

=-x^3+2x^2+2x+3

o: (-6x+1/2)(x^2-4x+2)

=-6x^3+24x^2-12x+1/2x^2-2x+1

=-64x^3+49/2x^2-14x+1

q: (6x+1)(x^2-2x-3)

=6x^3-12x^2-18x+x^2-2x-3

=6x^3-11x^2-20x-3

r: (2x+1)(-x^2-3x+1)

=-2x^3-6x^2+2x-x^2-3x+1

=-2x^3-7x^2-x+1

u: =-2x^3+2x^2+12x+3x^2-3x-18

=-2x^3+5x^2+9x-18

s: =-4x^3-12x^2+8x+5x^2+15x-10

=-4x^3-7x^2+23x-10

Ngô Linh
Xem chi tiết
Linh Ngô
Xem chi tiết
Nguyễn Nam
21 tháng 11 2017 lúc 18:34

1)

\(\dfrac{7x-1}{2x^2+6x}=\dfrac{7x-12}{x\left(x+3\right)}\)

\(\dfrac{3-2x}{x^2-9}=\dfrac{3-2x}{\left(x-3\right)\left(x+3\right)}\)

MTC: \(x\left(x-3\right)\left(x+3\right)\)

\(\dfrac{7x-1}{2x^2+6x}=\dfrac{7x-12}{x\left(x+3\right)}=\dfrac{\left(x-3\right)\left(7x-12\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{7x^2-12x-21x+36}{x\left(x-3\right)\left(x+3\right)}=\dfrac{7x^2-33x+36}{x\left(x-3\right)\left(x+3\right)}\)

\(\dfrac{3-2x}{x^2-9}=\dfrac{3-2x}{\left(x-3\right)\left(x+3\right)}=\dfrac{ x\left(3-2x\right)}{x\left(x-3\right)\left(x+3\right)}\dfrac{3x-2x^2}{x\left(x-3\right)\left(x+3\right)}\)

2)

\(\dfrac{2x-1}{x-x^2}=\dfrac{2x-1}{x\left(1-x\right)}\)

\(\dfrac{x+1}{2-4x+2x^2}=\dfrac{x+1}{2\left(1-2x+x^2\right)}=\dfrac{x+1}{2\left(1-x\right)^2}\)

MTC: \(2x\left(1-x\right)^2\)

\(\dfrac{2x-1}{x-x^2}=\dfrac{2x-1}{x\left(1-x\right)}=\dfrac{2\left(1-x\right)\left(2x-1\right)}{2x\left(1-x\right)^2}=\dfrac{\left(2-2x\right)\left(2x-1\right)}{2x\left(1-x\right)^2}=\dfrac{4x-2-4x^2+2x}{2x\left(1-x\right)^2}=\dfrac{6x-2-4x^2}{2x\left(1-x\right)^2}\)

\(\dfrac{x+1}{2-4x+2x^2}=\dfrac{x+1}{2\left(1-2x+x^2\right)}=\dfrac{x+1}{2\left(1-x\right)^2}=\dfrac{ x\left(x+1\right)}{2x\left(1-x\right)^2}=\dfrac{x^2+x}{2x\left(1-x\right)^2}\)

Phương Trâm
21 tháng 11 2017 lúc 19:22

Phần còn lại nhé :v

3.

\(x^3+1=\left(x+1\right)\left(x^2-x+1\right)\)

\(x^2-x+1=x^2-x+1\)

\(x+1=x+1\)

MTC: \(\left(x+1\right)\left(x^2-x+1\right)\)

\(\dfrac{x-1}{x^3+1}=\dfrac{x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\dfrac{2x}{x^2-x+1}=\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\dfrac{2}{x+1}=\dfrac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

4.

\(5x\)

\(x-2y=x-2y=-\left(2y-x\right)\)

\(8y^2-2x^2=2\left(4y^2-x^2\right)=2\left(2y-x\right)\left(2y+x\right)\)

MTC: \(-10x\left(2y-x\right)\left(2y+x\right)\)

\(\dfrac{7}{5x}=\dfrac{7\left(2y-x\right)\left(2y+x\right)-2}{5x\left(2y-x\right)\left(2y+x\right)-2}=\dfrac{-14\left(2y-x\right)\left(2y+x\right)}{-10x\left(2y-x\right)\left(2y+x\right)}\)

\(\dfrac{4}{x-2y}=\dfrac{4\left(2y-x\right)\left(2y+x\right)10x}{-\left(2y-x\right)\left(2y+x\right)10x}=\dfrac{40x\left(2y-x\right)\left(2y+x\right)}{-10x\left(2y-x\right)\left(2y+x\right)}\)

\(\dfrac{x-y}{8y^2-2x^2}=\dfrac{\left(x-y\right)-5x}{2\left(2y-x\right)\left(2y+x\right)-5x}=\dfrac{-5x\left(x-y\right)}{-10x\left(2y-x\right)\left(2y+x\right)}\)

5.

\(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

\(x^2-x=x\left(x-1\right)\)

\(x^2+x+1\)

MTC: \(x\left(x-1\right)\left(x^2+x+1\right)\)

\(\dfrac{x}{x^3-1}=\dfrac{x.x}{\left(x-1\right)\left(x^2+x+1\right)x}=\dfrac{x^2}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(\dfrac{x+1}{x^2-x}=\dfrac{\left(x+1\right)\left(x^2+x+1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(\dfrac{x-1}{x^2+x+1}=\dfrac{x\left(x-1\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x\left(x-1\right)^2}{x\left(x-1\right)\left(x^2+x+1\right)}\)

6.

\(x^2-2ax+a^2=\left(x-a\right)^2\)

\(x^2-ax=x\left(x-a\right)\)

MTC: \(x\left(x-a\right)^2\)

\(\dfrac{x}{x^2-2ax+a^2}=\dfrac{x.x}{\left(x-a\right)^2x}=\dfrac{x^2}{x\left(x-a\right)^2}\)

\(\dfrac{x+a}{x^2-ax}=\dfrac{\left(x+a\right)\left(x-a\right)}{x\left(x-a\right)\left(x-a\right)}=\dfrac{x^2-a^2}{x\left(x-a\right)^2}\)