4x + 4x + 1 = 20 . Vậy x = ....
x^20 = 1^x
x^30 = x
( 4x - 20 _^7 = ( 4x - 20 )^8
số mủ của 1 dù lớn đến bao hiêu thì cũng bằng 1 suy ra x=1 vậy thay x=1 vào biễu thức là ra
a \(\sqrt{4x-20}+\sqrt{x-5}=4+3\sqrt{\dfrac{x-5}{9}}\)
b \(\sqrt{4x-20}+\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{4x-45}=4\)
Lời giải:
a. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}=4+3.\sqrt{\frac{1}{9}}.\sqrt{x-5}$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}=4+\sqrt{x-5}$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x-5=4$
$\Leftrightarrow x=9$ (tm)
b. Sửa đoạn 4x-45 thành 4x-20.
ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{4}.\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}+\frac{1}{3}\sqrt{x-5}-\frac{2}{3}\sqrt{x-5}=4$
$\Leftrightarrow \frac{5}{3}\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=\frac{12}{5}$
$\Leftrightarrow x-5=\frac{144}{25}=5,76$
$\Leftrightarrow x=10,76$ (tm)
3/4x + 1/2(x+1)=-11/4
0,75x - x + 1 và 1/4x = 20%(4x-1)^30=(4x-1)^20 Tìm x
ta có : \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)(=)\(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)(=)\(\left(4x-1\right)^{20}\left[\left(4x-1\right)^{10}-1\right]=0\)(=)\(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left[\left(4x-1\right)^{10}-1\right]=0\end{cases}}\)(=)\(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)(=)\(\orbr{\begin{cases}4x=1\\\begin{cases}4x-1=1\\4x-1=-1\end{cases}\end{cases}}\)(=)\(\orbr{\begin{cases}x=\frac{1}{3}\\\begin{cases}4x=2\\4x=0\end{cases}\end{cases}}\)\(\orbr{\begin{cases}x=\frac{1}{4}\\\begin{cases}x=\frac{1}{2}\\x=0\end{cases}\end{cases}}\)
Tìm x
(4x-1)^30=(4x-1)^20
\(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
\(4x^{30}-1^{30}=4x^{20}-1^{20}\)
\(4x^{30}-4x^{20}=-1+1\)
\(4x^{20}\left(x^{10}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x^{20}=0\\x^{10}-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x^{20}=0\\x^{10}=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)
hok tốt!!
Ta có \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
<=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
<=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)
<=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=1\\4x-1=1;4x-1=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\4x=2;4x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=2;x=0\end{cases}}\)
Vậy \(x\in\left\{0;2;\frac{1}{4}\right\}\)
T k chắc bài t nhưng t chắc bạn ღTĭểυ Tɦưღ lm sai ròi )) lũy thừa thì lm j cs cái ct đó
Hc tốt
Tìm x biết
(4x-1)^30 = (4x-1)^20
\(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
\(\Leftrightarrow\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
\(\Leftrightarrow\left(4x-1\right)^{20}\left[\left(4x-1\right)^{10}-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=1\\4x-1=-1;1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\x=0\\x=\frac{1}{2}\end{cases}}\)
Vậy \(x=\frac{1}{4};0;\frac{1}{2}\)
P/s : phần \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\x=0\\x=\frac{1}{2}\end{cases}}\) thay dấu \(\hept{\begin{cases}\\\\\end{cases}}\) thành dấu \(\orbr{\begin{cases}\\\end{cases}}\) nhé!
\(\Leftrightarrow\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\end{cases}}\)
\(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
\(\Leftrightarrow\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
\(\Leftrightarrow\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\4x-1=\pm1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=0\end{cases}}\)
Vậy x = 1/4 hoặc 1/2 hoặc 0
Tìm x:
(4x-1)^30 =(4x-1)^20
Ta có:
\(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
Xét \(4x-1=0\)
\(\Rightarrow4x=1\Rightarrow x=\frac{1}{4}\), thỏa mãn
Xét \(4x-1\ne0\)
\(\Rightarrow\left(4x-1\right)^{30}:\left(4x-1\right)^{20}=1\)
\(\Rightarrow\left(4x-1\right)^{10}=1\Rightarrow\left[{}\begin{matrix}4x-1=1\Rightarrow x=\frac{1}{2}\\4x-1=-1\Rightarrow x=0\end{matrix}\right.\)
Vậy....
a,x^2-9x+20=0
b,x^3-4x^2+5x=0
c,x^2=2x-15=0
d,(x^2-1)^2=4x+1
e,4x^3-9x^2+6x-1=0
f,x^4-4x^3-x^2+16x-12=0
a) Ta có: \(x^2-9x+20=0\)
\(\Leftrightarrow x^2-5x-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)
Vậy: x∈{4;5}
b) Ta có: \(x^3-4x^2+5x=0\)
\(\Leftrightarrow x\left(x^2-4x+5\right)=0\)(1)
Ta có: \(x^2-4x+5\)
\(=x^2-4x+4+1=\left(x-2\right)^2+1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)
hay \(x^2-4x+5>0\forall x\)(2)
Từ (1) và (2) suy ra x=0
Vậy: x=0
c) Sửa đề: \(x^2-2x-15=0\)
Ta có: \(x^2-2x-15=0\)
\(\Leftrightarrow x^2+3x-5x-15=0\)
\(\Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
Vậy: x∈{-3;5}
d) Ta có: \(\left(x^2-1\right)^2=4x+1\)
\(\Leftrightarrow x^4-2x^2+1-4x-1=0\)
\(\Leftrightarrow x^4-2x^2-4x=0\)
\(\Leftrightarrow x\left(x^3-2x-4\right)=0\)
\(\Leftrightarrow x\left(x^3+2x^2+2x-2x^2-4x-4\right)=0\)
\(\Leftrightarrow x\cdot\left[x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\right]=0\)
\(\Leftrightarrow x\cdot\left(x^2+2x+2\right)\cdot\left(x-2\right)=0\)(3)
Ta có: \(x^2+2x+2\)
\(=x^2+2x+1+1=\left(x+1\right)^2+1\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)
hay \(x^2+2x+2>0\forall x\)(4)
Từ (3) và (4) suy ra
\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: x∈{0;2}
Giúp mình v
Bài10872917292872917 tìm x bt
5x-16=40+x
4x-10=15-x
-12+x=5x-2
7x-4=20+3x
5x-7=20+3x
x+15=7+6x
17-x=7-6x
3x+(-21)=12-8x
125:(3x-13)=25
541+(218-z)=735
3(2x+1)-19=14
175-5(x+3)=85
4x-40=|4|+12
x+15=20-4x
8x+|-3|=-4x+39
6(x-2)+(-2)=20-4x
5x-16=40+x
=> 5x-16-x = 40
=> 5x-x -16=40
4x-16=40
4x= 40+16
4x=56
x= 56:4
x=14
Vậy...
4x-10=15-x
=> 4x-10+x= 15
4x+x -10=15
5x= 15+10
5x= 25
x= 25:5
x=5
Vậy....
5x -16=40+x
=> 5x-x=40+16
=>4x=56
=>x=56:4
x=14
a) Ta có: \(8x^2+30x+7\)
\(=8x^2+28x+2x+7\)
\(=4x\left(2x+7\right)+\left(2x+7\right)\)
\(=\left(2x+7\right)\left(4x+1\right)\)
b) Ta có: \(4x^3-12x^2+9x\)
\(=x\left(4x^2-12x+9\right)\)
\(=x\left(2x-3\right)^2\)
c) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)
\(=\left(x+2\right)\cdot3x\)
d) Ta có: \(ab+c^2-ac-bc\)
\(=\left(ab-bc\right)+\left(c^2-ac\right)\)
\(=b\left(a-c\right)+c\left(c-a\right)\)
\(=b\left(a-c\right)-c\left(a-c\right)\)
\(=\left(a-c\right)\left(b-c\right)\)
e) Ta có: \(4x^2-y^2+1-4x\)
\(=\left(4x^2-4x+1\right)-y^2\)
\(=\left(2x-1\right)^2-y^2\)
\(=\left(2x-1-y\right)\left(2x-1+y\right)\)
f) Ta có: \(6x^2-7x-20\)
\(=6x^2-15x+8x-20\)
\(=3x\left(2x-5\right)+4\left(2x-5\right)\)
\(=\left(2x-5\right)\left(3x+4\right)\)
\(4x^3-12x^2+9x=x\left(4x^2-12x+9\right)=x\left(2x-3\right)^2\), \(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=\left(x+2\right)3x\)
\(ab+c^2-ac-bc=ab-ac-bc+c^2=a\left(b-c\right)-c\left(b-c\right)=\left(b-c\right)\left(a-c\right)\)
\(4x^2-y^2+1-4x=4x^2-4x+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-y-1\right)\left(2x+y-1\right)\)
\(6x^2-7x-20=6x^2-15x+8x-20=3x\left(2x-5\right)+4\left(2x-5\right)=\left(2x-5\right)\left(3x+4\right)\)
\(8x^2+30x+7=8x^2+2x+28x+7=2x\left(4x+1\right)+7\left(4x+1\right)=\left(4x+1\right)\left(2x+7\right)\)