Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
free fire
Xem chi tiết
Phương Thảo
Xem chi tiết
Trịnh Việt Dũng
15 tháng 6 2022 lúc 20:29

chịu hoi =))))))

 

Trịnh Việt Dũng
15 tháng 6 2022 lúc 20:29

em mới học lớp 7 hà

năm nay lên lớp 8 =)))))

Nguyễn Thảo My
14 tháng 1 2023 lúc 21:25

1)Ta có: \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)

\(\Leftrightarrow8=\dfrac{1}{2}\times4\times5\times sinA\)

\(\Leftrightarrow\sin A=0,8\)

Lại có: \(\left(\sin A\right)^2+\left(\cos A\right)^2=1\Leftrightarrow\cos A=0,6.\)

Áp dụng định lí hàm số cosin:

\(BC^2=AB^2+AC^2-2AB\times AC\times\cos A\)

\(\Leftrightarrow BC^2=4^2+5^2-2\times4\times5\times0,6=17\)

\(\Leftrightarrow BC=\sqrt{17}.\)

2) Trong \(\Delta ABC\) có: \(g\text{ó}cA+g\text{óc}B+g\text{óc}C=180^o\)

=> BAC=75o.

Áp dụng định lí hàm số sin:

\(\dfrac{AB}{\sin C}=\dfrac{BC}{\sin A}\Leftrightarrow\dfrac{3}{\sin45^o}=\dfrac{BC}{\sin75^o}\)

\(\Leftrightarrow BC=\dfrac{3+3\sqrt{3}}{2}\).

 

 

Lê Ngọc Linh
Xem chi tiết
Phúc Hồ Thị Ngọc
11 tháng 8 2015 lúc 21:28

2/AB/AC=3/4 nên AB=3AC/4(1)

Tam giác ABC vuông tại A, đường cao AH. Ta có: 1/AH2=1/AB2+1/AC2. Thay (1) vào rồi bạn giải phương trình sẽ tìm ra được AB, AC, BC từ đó sẽ ra chu vi tam giác ABC

 

FREESHIP Asistant
Xem chi tiết
ILoveMath
28 tháng 1 2022 lúc 21:12

Tham khảo:Cho tam giác ABC có AB=3,AC=4 và diện tích S=3√3.Tính cạnh BC câu hỏi 246237 - hoidap247.com

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 6 2017 lúc 8:16

Chọn C

Theo giả thiết ta có: A B 2 + B C 2 = A C 2 nên theo định lý pytago đảo tam giác ABC vuông tại B.

Nên AB là đoạn vuông góc chung của SA và BC.

Vậy d(SA;BC)=AB=6.

Got many jams
Xem chi tiết
Hồng Phúc
17 tháng 12 2020 lúc 12:41

a, \(\left(\overrightarrow{AC}-\overrightarrow{AB}\right)^2=\overrightarrow{BC}^2\)

\(\Leftrightarrow AC^2+AB^2-2\overrightarrow{AB}.\overrightarrow{AC}=BC^2\)

\(\Leftrightarrow2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2-BC^2\)

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{AB^2+AC^2-BC^2}{2}=\dfrac{5^2+8^2-7^2}{2}=20\)

b, \(2\overrightarrow{CA}.\overrightarrow{CB}=CA^2+CB^2-BC^2=CA^2\)

\(\Rightarrow\overrightarrow{CA}.\overrightarrow{CB}=\dfrac{CA^2}{2}=\dfrac{8^2}{2}=32\)

Akai Haruma
17 tháng 12 2020 lúc 14:45

Lời giải:

a) 

\(\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{BC}\)

\(\Rightarrow (\overrightarrow{AC}-\overrightarrow{AB})^2=\overrightarrow{BC}^2\Leftrightarrow AB^2+AC^2-2\overrightarrow{AC}.\overrightarrow{AB}=BC^2\)

\(\Leftrightarrow 2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2-BC^2\) (đpcm)

Ta có:

\(\overrightarrow{AB}.\overrightarrow{AC}=\frac{AB^2+AC^2-BC^2}{2}=\frac{5^2+8^2-7^2}{2}=20\)

\(\cos \angle A=\frac{\overrightarrow{AB}.\overrightarrow{AC}}{|\overrightarrow{AB}|.|\overrightarrow{AC}|}=\frac{20}{5.8}=\frac{1}{2}\)

\(\Rightarrow \angle A=60^0\)

b) 

Tương tự phần a, \(\overrightarrow{CA}.\overrightarrow{CB}=\frac{CA^2+CB^2-AB^2}{2}=\frac{8^2+7^2-5^2}{2}=44\)

Phan Gia Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 18:22

loading...  loading...  loading...  

Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 18:31

loading...  loading...  loading...  

Phùng Đức Anh
Xem chi tiết
Nguyễn Hồng Ngọc
Xem chi tiết
Thanh Tùng DZ
27 tháng 4 2020 lúc 9:30

A B C D x x 5 8

Kéo dài AB một đoạn thẳng BD = BC = x

dễ thấy \(\Delta ABC~\Delta ACD\left(g.g\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AC}{AD}\Rightarrow\frac{5}{8}=\frac{8}{5+x}\Rightarrow x=7,8\)

Khách vãng lai đã xóa
Nguyễn Thị Thùy Linh
Xem chi tiết
Kẻ Dối_Trá
29 tháng 7 2016 lúc 7:20

Dựng đường cao CE. 
trong tam giác vuông BCE ta có: 
CE = BC*sinB = 8*sin60o = 8*√3 / 2 = 4√3. 
BE = BC*cosB = 8*cos60o = 8*(1/2) = 4 
thấy BE < BA mà B là góc nhọn => e nằm trên đoạn BA 
=> EA = BA - BE = 5 - 4 = 1 
cuối cùng ta dùng pitago trong tam giác vuông EAC: 
AC^2 = CE^2 + EA^2 = (4√3)^2 + 1^2 = 49 
=> BC = 7 (cm)