\(4\dfrac{3}{4}:1\dfrac{19}{24}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
bài 1 tính :
\(\dfrac{-8}{9}\) . \(\dfrac{12}{19}\) . \(\dfrac{9}{-4}\) . \(\dfrac{19}{24}\) \(\dfrac{-5}{16}\) . \(\dfrac{17}{15}\) : \(\dfrac{-17}{8}\)
\(\dfrac{4}{13}\) . \(\dfrac{2}{7}\) + \(\dfrac{-3}{26}\) + \(\dfrac{4}{13}\) . \(\dfrac{5}{7}\) \(\dfrac{6}{11}\) . \(\dfrac{3}{4}\) + \(\dfrac{-12}{60}\) +\(\dfrac{-3}{4}\) .\(\dfrac{-5}{11}\)
giúp mk vs mn ơi , mai cô giáo ktra mk r
a: \(=\dfrac{8}{9}\cdot\dfrac{9}{4}\cdot\dfrac{12}{19}\cdot\dfrac{19}{24}=\dfrac{1}{2}\cdot2=1\)
b: \(=\dfrac{5}{16}\cdot\dfrac{17}{15}\cdot\dfrac{8}{17}=\dfrac{5}{16}\cdot\dfrac{8}{15}=\dfrac{40}{240}=\dfrac{1}{6}\)
c: \(=\dfrac{4}{13}\left(\dfrac{2}{7}+\dfrac{5}{7}\right)-\dfrac{3}{26}=\dfrac{4}{13}-\dfrac{3}{26}=\dfrac{5}{26}\)
c: \(=\dfrac{3}{4}\left(\dfrac{6}{11}+\dfrac{5}{11}\right)-\dfrac{1}{5}=\dfrac{3}{4}-\dfrac{1}{5}=\dfrac{11}{20}\)
I = \(\dfrac{5}{4}+\dfrac{-1}{3}-\dfrac{5}{-24}\)
J = \(\dfrac{-19}{-9}+\dfrac{4}{-11}-\dfrac{-2}{3}\)
K = \(\dfrac{-5}{6}-\dfrac{7}{12}+\dfrac{-3}{4}\)
L = \(\dfrac{-3}{20}+\dfrac{1}{5}-\dfrac{-5}{3}\)
\(I=\dfrac{5}{4}+\dfrac{-1}{3}-\dfrac{5}{-24}=\dfrac{9}{8}\)
\(J=\dfrac{-19}{-9}+\dfrac{4}{-11}-\dfrac{-2}{3}=\dfrac{239}{99}\)
\(K=\dfrac{-5}{6}-\dfrac{7}{12}+\dfrac{-3}{4}=-\dfrac{13}{6}\)
\(L=\dfrac{-3}{20}+\dfrac{1}{5}-\dfrac{-5}{3}=\dfrac{103}{60}\)
Tính giá trị biểu thức:
\(e,\dfrac{18}{37}+\dfrac{8}{24}+\dfrac{19}{37}-1\dfrac{23}{24}+\dfrac{2}{3}\)
\(f,\left(-2\right)^3.\left(\dfrac{3}{4}-0,25\right):\left(2\dfrac{1}{4}-1\dfrac{1}{6}\right)\)
\(g,\left(\dfrac{2}{5}\right)^2+5\dfrac{1}{2}.\left(4,5-2\right)+\dfrac{2^3}{\left(-4\right)}\)
\(h,\dfrac{4}{9}.19\dfrac{1}{3}-\dfrac{4}{9}.39\dfrac{1}{3}\)
\(i,\left(-\dfrac{1}{2}\right)^2:\dfrac{1}{4}-2\left(-\dfrac{1}{2}\right)^2\)
\(j,125\%.\left(\dfrac{-1}{2}\right)^2:\left(1\dfrac{5}{16}-1,5\right)+2008^0\)
\(k,\left(-2\right)^3.\dfrac{-1}{24}+\left(\dfrac{4}{3}-1\dfrac{5}{6}\right):\dfrac{5}{12}\)
e: \(=\left(\dfrac{18}{37}+\dfrac{19}{37}\right)+\left(\dfrac{8}{24}+\dfrac{2}{3}\right)-\dfrac{47}{24}=2-\dfrac{47}{24}=\dfrac{1}{24}\)
f: \(=-8\cdot\dfrac{1}{2}:\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)
\(=-4:\dfrac{13}{12}=\dfrac{-48}{13}\)
g: \(=\dfrac{4}{25}+\dfrac{11}{2}\cdot\dfrac{5}{2}-\dfrac{8}{4}=\dfrac{4}{25}+\dfrac{55}{4}-2=\dfrac{1191}{100}\)
3. b) \(1\dfrac{13}{15}\).(0,5)2.3+(\(\dfrac{8}{15}\)-\(1\dfrac{19}{60}\)):\(1\dfrac{23}{24}\)
c) (-2)3.\(\dfrac{-1}{24}\)+(\(\dfrac{4}{5}\)-1,2):\(\dfrac{2}{15}\)
d) (\(\dfrac{-2}{5}\))2+\(\dfrac{1}{2}\).(4,5-2)-255
\(Câu 1) \dfrac {15} {34} + \dfrac {7} {21} + \dfrac {19} {34}-1\dfrac {15} {17}+\dfrac {3} {5} Câu 2) \dfrac {(5)^{4}.(20)^{4}} {(24)^{4}.45}\)
Câu 1:
\(=\dfrac{15}{34}+\dfrac{19}{34}-1-\dfrac{15}{17}+\dfrac{1}{3}+\dfrac{3}{5}\)
\(=-\dfrac{15}{17}+\dfrac{14}{15}=\dfrac{13}{255}\)
Câu 2:
\(=\dfrac{5^4\cdot5^4\cdot2^8}{4^4\cdot6^4\cdot3^2\cdot5}=\dfrac{5^7}{6^4\cdot3^2}\)
SS A và B
A=\(\dfrac{19}{24}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{7}{24}\)
B=\(\dfrac{7}{24}+\dfrac{5}{6}+\dfrac{1}{4}-\dfrac{3}{7}-\dfrac{5}{15}\)
\(A=\frac{19}{24}-\frac{1}{2}-\frac{1}{3}-\frac{7}{24}\)
\(A=\frac{19}{24}+\frac{-1}{2}+\frac{-1}{3}+\frac{-7}{24}\)
\(A=\left(\frac{19}{24}+\frac{-7}{24}\right)+\frac{-1}{2}+\frac{-1}{3}\)
\(A=\frac{1}{2}+\frac{-1}{2}+\frac{-1}{3}\)
\(A=0+\frac{-1}{3}=\frac{-1}{3}\)
\(B=\frac{7}{24}+\frac{5}{6}+\frac{1}{4}-\frac{3}{7}-\frac{5}{15}\)
\(B=\frac{7}{24}+\frac{5}{6}+\frac{1}{4}+\frac{-3}{7}+\frac{-1}{3}\)
\(B=\left(\frac{49}{168}+\frac{140}{168}+\frac{42}{168}\right)+\left(\frac{-72}{168}+\frac{-56}{168}\right)\)
\(B=\frac{231}{168}+\frac{-128}{168}=\frac{103}{168}\)
Có: \(A=\frac{-1}{3}=\frac{\left(-1\right)\cdot56}{3\cdot56}=\frac{-56}{168}\)
Mặt khác: \(-56< 103\)
\(\Rightarrow\)\(\frac{-56}{168}< \frac{103}{168}\)
\(hay\) \(A< B\)
\(\dfrac{99}{100}:\left(\dfrac{1}{4}-\dfrac{1}{12}+\dfrac{1}{3}\right)-\left(\dfrac{-7}{5}\right)^2\)
\(\dfrac{13}{15}\cdot0,25\cdot3+\left(\dfrac{8}{15}-1\dfrac{19}{60}\right):1\dfrac{23}{24}\)
a: \(=\dfrac{99}{100}:\left(\dfrac{3}{12}-\dfrac{1}{12}+\dfrac{4}{12}\right)-\dfrac{49}{25}\)
\(=\dfrac{99}{100}:\dfrac{1}{2}-\dfrac{49}{25}\)
\(=\dfrac{99}{50}-\dfrac{98}{50}=\dfrac{1}{50}\)
b: \(=\dfrac{13}{15}\cdot\dfrac{1}{4}\cdot3+\left(\dfrac{32}{60}-1-\dfrac{19}{60}\right):\dfrac{47}{24}\)
\(=\dfrac{39}{60}+\dfrac{-19}{60}\cdot\dfrac{24}{47}\)
=459/940
19, \(\sqrt{19-x}=19\)
21,\(\sqrt{x-1}=\dfrac{1}{3}\)
24,\(\sqrt{2x+\dfrac{5}{4}}=\dfrac{3}{2}\)
25,\(\sqrt{\dfrac{x}{3}-\dfrac{7}{6}}=\dfrac{1}{6}\)
19) \(\sqrt{19-x}=19\)
\(\Rightarrow\sqrt{19-x}=\sqrt{19^2}\)
\(\Rightarrow19-x=19^2\)
\(\Rightarrow19-19^2=x\)
\(\Rightarrow x=19\left(1-19\right)=-19.18=-342\)
21) \(\sqrt{x-1}=\dfrac{1}{3}\)
\(\Rightarrow\sqrt{x-1}=\sqrt{\left(\dfrac{1}{3}\right)^2}\)
\(\Rightarrow x-1=\dfrac{1}{3^2}\)
\(x=\dfrac{1+9}{9}=\dfrac{10}{9}\)
24)\(\sqrt{2x+\dfrac{5}{4}}=\dfrac{3}{2}\)
\(\Rightarrow\sqrt{2x+\dfrac{5}{4}}=\sqrt{\left(\dfrac{3}{2}\right)^2}\)
\(\Rightarrow2x+\dfrac{5}{4}=\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\Rightarrow2x=\dfrac{9-5}{4}=1\)
\(\Rightarrow x=0,5\)
25) \(\sqrt{\dfrac{x}{3}-\dfrac{7}{6}}=\dfrac{1}{6}\)
\(\Rightarrow\sqrt{\dfrac{2x-7}{6}}=\sqrt{\left(\dfrac{1}{6}\right)^2}\)
\(\Rightarrow\dfrac{2x-7}{6}=\left(\dfrac{1}{6}\right)^2=\dfrac{1}{36}\)
\(\Rightarrow\dfrac{12x-42}{36}=\dfrac{1}{36}\)
\(\Rightarrow12x-42=1\)
\(\Rightarrow12x=43\)
\(\Rightarrow x=\dfrac{43}{12}\)
Tìm x biết:
a)\(\dfrac{-2}{3}x=\dfrac{4}{15}\) b) \(\dfrac{-7}{19}x=\dfrac{-13}{24}\)
x=\(\dfrac{4}{15}\) : \(\dfrac{-2}{3}\)
x=\(\dfrac{-2}{5}\)
a: Ta có: \(x\cdot\dfrac{-2}{3}=\dfrac{4}{15}\)
\(\Leftrightarrow x=\dfrac{4}{15}:\dfrac{-2}{3}=\dfrac{4}{15}\cdot\dfrac{-3}{2}=\dfrac{-2}{5}\)
b: Ta có: \(x\cdot\dfrac{-7}{19}=\dfrac{-13}{24}\)
\(\Leftrightarrow x=\dfrac{13}{24}:\dfrac{7}{19}=\dfrac{247}{168}\)
\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{2}{18}+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{19}+\dfrac{1}{20}}\)
\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
Biến đổi tử số
\(19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}\)
= 1 + \(\left(1+\dfrac{18}{2}\right)+\left(1+\dfrac{17}{3}\right)+\left(1+\dfrac{16}{4}\right)+...+\left(1+\dfrac{1}{19}\right)\)
= \(\dfrac{20}{20}+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{1}{19}\)
= 20 x \(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)\)
Vậy \(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
= \(\dfrac{20\times\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}=20\)
Vậy A = 20