Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Đức Anh

SS A và B

A=\(\dfrac{19}{24}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{7}{24}\)

B=\(\dfrac{7}{24}+\dfrac{5}{6}+\dfrac{1}{4}-\dfrac{3}{7}-\dfrac{5}{15}\)

👁💧👄💧👁
15 tháng 3 2019 lúc 21:10

\(A=\frac{19}{24}-\frac{1}{2}-\frac{1}{3}-\frac{7}{24}\)

\(A=\frac{19}{24}+\frac{-1}{2}+\frac{-1}{3}+\frac{-7}{24}\)

\(A=\left(\frac{19}{24}+\frac{-7}{24}\right)+\frac{-1}{2}+\frac{-1}{3}\)

\(A=\frac{1}{2}+\frac{-1}{2}+\frac{-1}{3}\)

\(A=0+\frac{-1}{3}=\frac{-1}{3}\)

\(B=\frac{7}{24}+\frac{5}{6}+\frac{1}{4}-\frac{3}{7}-\frac{5}{15}\)

\(B=\frac{7}{24}+\frac{5}{6}+\frac{1}{4}+\frac{-3}{7}+\frac{-1}{3}\)

\(B=\left(\frac{49}{168}+\frac{140}{168}+\frac{42}{168}\right)+\left(\frac{-72}{168}+\frac{-56}{168}\right)\)

\(B=\frac{231}{168}+\frac{-128}{168}=\frac{103}{168}\)

Có: \(A=\frac{-1}{3}=\frac{\left(-1\right)\cdot56}{3\cdot56}=\frac{-56}{168}\)

Mặt khác: \(-56< 103\)

\(\Rightarrow\)\(\frac{-56}{168}< \frac{103}{168}\)

\(hay\) \(A< B\)


Các câu hỏi tương tự
Spade Z
Xem chi tiết
Vũ Khánh Ly
Xem chi tiết
Noo Phước Thịnh
Xem chi tiết
Cute Vô Đối
Xem chi tiết
Ly Hoàng
Xem chi tiết
hello hello
Xem chi tiết
Xem chi tiết
mr. killer
Xem chi tiết
Chi Nguyễn Khánh
Xem chi tiết