a, ( x - 7 ) ( x + 12) = 0
b, x ( x + 2 ) > 0
c, ( x - 1 ) ( x + 3 ) <0
a) 2x(x + 1) – 2x2 = 0
b) 3(x – 7) + 4x(x – 7) = 0
c) x2 – x = 12
\(a)2x(x+1)-2x^2=0 <=> 2x^2+2x-2x^2=0 \\<=>2x=0<=>x=0 \\b)3(x-7)+4x(x-7)=0<=>(4x+3)(x-7)=0 \\<=>4x+3=0\ hoặc\ x+7=0 \\<=>x=\dfrac{-3}{4}\ hoặc\ x=-7 \\c)x^2-x=12<=>x^2-x-12=0 \\<=>(x+3)(x-4)=0 \\<=>x+3=0\ hoặc\ x-4=0 \\<=>x=-3\ hoặc\ x=4\)
Tìm x∈Z, biết:
a)x.(x-6)=0
b)(-7-x).(-x+5)=0
c)(x+3).(x-7)=0
d)(x-3).(x2+12)=0
e)(x+1).(2-x) ≥0
f)(x-3).(x-5) ≤0
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
c) => \(\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
1.tìm x,y biết
a, x.(y-3)≥0
b, (2.x-1).(y-1)≤0
c,(x-1).(2.k+1)≥0
2. tìm x,y ϵ Z biết
a, x(x+3)=0
b,(x-2).(5-x)=0
c,(x-1).(x^2+1)=0
d, x.y+3.x-7.y=21
e,x.y+3.x-2y=11
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
1.tìm x,y biết
a, x.(y-3)≥0
b, (2.x-1).(y-1)≤0
c,(x-1).(2.k+1)≥0
2. tìm x,y ϵ Z biết
a, x(x+3)=0
b,(x-2).(5-x)=0
c,(x-1).(x^2+1)=0
d, x.y+3.x-7.y=21
e,x.y+3.x-2y=11
GIẢI GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP LẮM Ạ!!!!!
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a) 4x – 20 = 0
b) 2x + x + 12 = 0
c) x – 5 = 3 – x
d) 7 – 3x = 9 – x
a) 4x – 20 = 0
⇔ 4x = 20
⇔ x = 20 : 4
⇔ x = 5
Vậy phương trình có nghiệm duy nhất x = 5.
b) 2x + x + 12 = 0
⇔ 3x + 12 = 0
⇔ 3x = -12
⇔ x = -12 : 3
⇔ x = -4
Vậy phương trình đã cho có nghiệm duy nhất x = -4
c) x – 5 = 3 – x
⇔ x + x = 5 + 3
⇔ 2x = 8
⇔ x = 8 : 2
⇔ x = 4
Vậy phương trình có nghiệm duy nhất x = 4
d) 7 – 3x = 9 – x
⇔ 7 – 9 = 3x – x
⇔ -2 = 2x
⇔ -2 : 2 = x
⇔ -1 = x
⇔ x = -1
Vậy phương trình có nghiệm duy nhất x = -1.
Em lớp 6 em chỉ làm dc phần a,b,c
Kết quả như sau:
a,4x-20=0
4x=20+0
4x=20
x=20:4
x=5
tìm x biết :
a,(2x+ 4/5) (3x-1/2)= 0
b,(x-2/5) (x+4/7)= 0
c,-1 =|x- 5/6|= 1/2
d,x+ 5/8 x- 12/16x= 1
a. 2x+\(\dfrac{4}{5}\)=0 hoặc 3x-\(\dfrac{1}{2}\)=0
2x=- 4/5 hoặc 3x=1/2
x=-2/5 hoặc x=\(\dfrac{1}{6}\)
b. x-\(\dfrac{2}{5}\)=0 hoặc x+\(\dfrac{4}{7}\)=0
x=2/5 hoặc x=-\(\dfrac{4}{7}\)
d. x(1+5/8-12/16)=1
\(\dfrac{7}{8}\)x=1=> x=8/7
a, ( x + 1 )2 - 4( x + 2)2 = 0
b, ( x + 2 )2 + x2 - 4 = 0
c, x + √x - 12 = 0
\(a,\Leftrightarrow\left(x+1-2x-4\right)\left(x+1+2x+4\right)=0\\ \Leftrightarrow\left(-x-3\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{5}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)^2+\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x+2+x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ c,ĐK:x\ge0\\ PT\Leftrightarrow x-3\sqrt{x}+4\sqrt{x}-12=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)=0\\ \Leftrightarrow\sqrt{x}=3\left(\sqrt{x}+4>0\right)\\ \Leftrightarrow x=9\left(tm\right)\)
Tìm x :
a , ( x-1 )( x-4 ) > 0
b , ( x-6 )( x-7 ) < 0
c , ( x-1 )( x-2 ) bé hơn bằng 0
d , ( x-2 )( x- 2/3 ) lớn hơn bằng 0 .
a) Ta có: (x-1)(x-4)>0
\(\Leftrightarrow\left[{}\begin{matrix}x-4>0\\x-1< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>4\\x< 1\end{matrix}\right.\)
b) Ta có: (x-6)(x-7)<0
\(\Leftrightarrow\left\{{}\begin{matrix}x-6>0\\x-7< 0\end{matrix}\right.\Leftrightarrow6< x< 7\)
c) Ta có: \(\left(x-1\right)\left(x-2\right)\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x-2\le0\end{matrix}\right.\Leftrightarrow1\le x\le2\)
d) Ta có: \(\left(x-2\right)\left(x-\dfrac{2}{3}\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2\ge0\\x-\dfrac{2}{3}\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le\dfrac{2}{3}\end{matrix}\right.\)
a) Ta có: (x-1)(x-4)>0
⇔[x−4>0x−1<0⇔[x>4x<1⇔[x−4>0x−1<0⇔[x>4x<1
b) Ta có: (x-6)(x-7)<0
⇔{x−6>0x−7<0⇔6<x<7⇔{x−6>0x−7<0⇔6<x<7
c) Ta có: (x−1)(x−2)≤0(x−1)(x−2)≤0
⇔{x−1≥0x−2≤0⇔1≤x≤2⇔{x−1≥0x−2≤0⇔1≤x≤2
d) Ta có: (x−2)(x−23)≥0(x−2)(x−23)≥0
⇔⎡⎣x−2≥0x−23≤0⇔⎡⎣x≥2x≤23
a) (x-1/5).(8/5+2x)=0
b) (x-4/7):(x+1/2)>0
c) (2x-3):(x+7/4)<0
Mong mn trả lời ạ
\(a,\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{5}=0\\\dfrac{8}{5}+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=\dfrac{4}{5}\end{matrix}\right.\)
\(b,\dfrac{x-\dfrac{4}{7}}{x+\dfrac{1}{2}}>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{4}{7}>0\\x+\dfrac{1}{2}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{4}{7}< 0\\x+\dfrac{1}{2}< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{4}{7}\\x< -\dfrac{1}{2}\end{matrix}\right.\)
\(c,\dfrac{2x-3}{x+\dfrac{7}{4}}< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-3< 0\\x+\dfrac{7}{4}>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-3>0\\x+\dfrac{7}{4}< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x >-\dfrac{7}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{7}{4}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-\dfrac{7}{4}< x< \dfrac{3}{2}\\x\in\varnothing\end{matrix}\right.\Leftrightarrow-\dfrac{7}{4}< x< \dfrac{3}{2}\)
tìm x
a)x^2-x-12=0
b)x^2+3x-18=0
c)8x^2+30x+7=0
d)x^3-11x^2+30x=0
e)x^3-7x^2+15x-25=0
giúp mk vs ah!!!!!
a) Ta có: \(x^2-x-12=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
b) Ta có: \(x^2+3x-18=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=3\end{matrix}\right.\)