Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Linh Chi
Xem chi tiết
Akai Haruma
28 tháng 5 2019 lúc 19:56

Lời giải:

PT \(\Leftrightarrow 3x^2+2x(2y-1)+(4y^2+6y+2021-T)=0\)

Coi đây là PT bậc 2 ẩn $x$.

Vì dấu "=" tồn tại nên PT trên luôn có nghiệm

\(\Rightarrow \Delta'=(2y-1)^2-3(4y^2+6y+2021-T)\geq 0\)

\(\Leftrightarrow -8y^2-22y-6062+3T\geq 0\)

\(\Leftrightarrow 3T\geq 8y^2+22y+6062\)

Mà: \(8y^2+22y+6062=8(y+\frac{11}{8})^2+\frac{48375}{8}\geq \frac{48375}{8}\)

\(\Rightarrow T\geq \frac{48375}{8}:3=\frac{16125}{8}\) (đây chính là GTNN của T)

\(\Leftrightarrow \)

Nguyễn Thị Mỹ Bình
Xem chi tiết
Đặng Nguyễn Khánh Uyên
Xem chi tiết
ngonhuminh
26 tháng 12 2016 lúc 19:10

a=(2x+y)^2+(x-1)^2+(y+2)^2+2021-5=2016

Amin=2016

Đỗ Phương Chi
Xem chi tiết
★Čүċℓøρş★
16 tháng 12 2019 lúc 21:00

\(N = 5x^2 + 2y^ 2 + 4xy - 2x + 4y + 2015\)

\(N = ( 4x^ 2 + 4xy + y ^ 2 ) + ( x^2 - 2x + 1 )+\)

\(( y^2 + 4y + 4 ) + 2010\)

\(N = ( 2x + y )^2 + ( x - 1 )^2 + ( y + 2 )^2 + 2010\)

\(\ge\)\(2010\)

\(Dấu " = " xảy ra \)\(\Leftrightarrow\) \(2x + y = 0 và\)\(x - 1 = 0 và y + 2 = 0\)

\(\Rightarrow\)\(x = 1 và y = - 2\)

\(Min N = 2010\)\(\Leftrightarrow\)\(x = 1 và y = - 2\)

Khách vãng lai đã xóa
Trần Việt My
Xem chi tiết
Thắng Nguyễn
15 tháng 7 2016 lúc 6:22

Bài 1:

A=x2 +y2 -2x-2y+2xy+5

=x2 +y2 -2x-2y+2xy+1+4

=xy+x2-x+xy+y2-y-y-x+1+4

=x(x+y-1)+y(x+y-1)-1(x+y-1)

=(x+y-1)(x+y-1)

=(x+y-1)2+4.Với x+y=3

=>A=(3-1)2+4=22+4=8

Bài 2:

B=x^2 +4y^2-2x-4y-4xy+10

=-2xy+x2-x-2xy+4y2+2y-x+2y+1-8y+9

=x(x-2y-1)-2y(x-2y-1)-1(x-2y-1)-8y+9

=(x-2y-1)(x-2y-1)-8y+9

=(x-2y-1)2-8y+9

Với x-2y=5.Ta có:... tự thay

Bài 3: chịu

Rhider
Xem chi tiết
Akai Haruma
19 tháng 12 2021 lúc 20:35

Lời giải:
$A=x^2+2x+2xy+2y^2+4y+2021$

$=(x^2+2xy+y^2)+2x+y^2+4y+2021$

$=(x+y)^2+2(x+y)+1+(y^2+2y+1)+2019$

$=(x+y+1)^2+(y+1)^2+2019\geq 2019$

Vậy $A_{\min}=2019$ khi $x+y+1=y+1=0$

$\Leftrightarrow (x,y)=(0,-1)$

việt lê
Xem chi tiết
Lizk Kenih
Xem chi tiết
tthnew
29 tháng 6 2019 lúc 8:46

D ez nhất :v

\(D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+5\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+5\ge5\)

Đẳng thức xảy ra khi x = 1 và y = -2

tthnew
29 tháng 6 2019 lúc 8:37

\(A=\left[\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4\right]+\left(y^2-2y+1\right)+2020\)

\(=\left[\left(x-y\right)^2+2\left(x-y\right).2+2^2\right]+\left(y-1\right)^2+2020\)

\(=\left(x-y+2\right)^2+\left(y-1\right)^2+2020\ge2020\)

Dấu "=" xảy ra khi y = 1 và x - y + 2 = 0 tức là x = y - 2 = -1

tthnew
29 tháng 6 2019 lúc 8:40

\(B=\left(x^2-2xy+y^2\right)-2\left(x-y\right)+1+x^2-2x+1+2019\)

\(=\left(x-y\right)^2-2\left(x-y\right).1+1+\left(x-1\right)^2+2019\)

\(=\left(x-y-1\right)^2+\left(x-1\right)^2+2019\ge2019\)

Dấu "=" xảy ra khi x = 1 và x - y - 1 = 0 hay y = 0

Trần Văn Thành
Xem chi tiết