cho x,y,z thỏa mãn x.y.z=1 C/m : 1/xy+x+1+y/yz+y+1+1/xyz+yz+y=1
Cho x,y,z thỏa mãn x.y.z=1
Chứng minh: \(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}=1\)
Ta có:
\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}=\frac{xyz}{xy+x+xyz}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)
\(=\frac{xyz}{x.\left(y+1+yz\right)}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)
\(=\frac{yz}{y+1+yz}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)
\(=\frac{yz+y+1}{yz+y+1}=1\left(đpcm\right)\)
Cho x; y; z thỏa mãn : x.y.z =1
Chứng minh :\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)
thay x.y.z zô biểu thức đi . rùi đặt nhân tử chung rùi tự làm , đến đó mà k làm dc nữa thì die đi
cho x,y,z thỏa mãn xyz=1. cm: 1/ xy+x+1 +1/ yz+y+1 +1/ xyz+yz+y =1
Từ xyz=1
=>\(\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{xyz+zx+z}=\frac{z}{xyz+xz+z}+\frac{xz}{xyz^2+xyz+xz}+\frac{1}{xyz+zx+z}\)=\(\frac{z}{1+zx+z}+\frac{xz}{1+z+xz}+\frac{1}{1+xz+z}=1\left(đpcm\right)\)
Cho x, y, z, thỏa mãn xyz=1 .Chứng minh rằng :\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}=1\)
ta có :
\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)
\(\frac{xyz}{xy+x+xyz}+\frac{y}{yz+y+1}+\frac{xyz}{1+yz+y}\)
\(\frac{yz+y+xyz}{y+1+yz}\)
\(\frac{yz+y+1}{yz+y+1}\)
=1
luffy123 làm đúng mà sao vẫn có đứa bảo sai kìa
Cho 3 số dương x,y,z thỏa mãn: xyz=1 . Tính giá trị biểu thức :
\(M=\frac{x+2xy+1}{x+xy+xz+z}+\frac{y+2yz+1}{y+yz+xy+1}+\frac{z+2xz+1}{z+xz+yz+1}\)
Ta có \(\frac{x+2xy+1}{x+xy+xz+1}=\frac{x+2xy+xyz}{x+xy+xz+xyz}=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}\)
Tương tự => \(M=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}+\frac{1+2z+zx}{\left(1+x\right)\left(z+1\right)}+\frac{1+2x+xy}{\left(1+x\right)\left(y+1\right)}\)
=> \(M=\frac{\left(1+2y+yz\right)\left(1+x\right)+\left(1+2z+zx\right)\left(1+y\right)+\left(1+2x+xy\right)\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
=>\(M=\frac{6+3\left(x+y+z\right)+3\left(xy+yz+xz\right)}{2+\left(x+y+z\right)+\left(xy+yz+xz\right)}=3\)
Cho x,y,z thõa mãn. x.y.z=1
CMR 1/(xy+x+1)+y/(yz+y+1)+1/(xyz+yz+y)=1
Cam ơn nhiu
Cho \(x,y,z\) thỏa mãn \(xyz=1\)
CMR \(\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{zx+z+1}=1\)
\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(A=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{y+z}{z}\)
Do \(x-y-z=0\)
\(\Rightarrow x-z=y;y-x=-z;y+z=x\)
Khi đó \(A=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)
Vậy A=-1
\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)
\(=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)
\(=\frac{1}{xy+x+1}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz}{xy\cdot yz+xyz+yz}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz}{yz+y+1}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz+y+1}{yz+y+1}\)
\(=1\)
Cho x, y, z thỏa mãn xyz = 1
CMR : \(\dfrac{1}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{1}{xyz+yz+y}=1\)
\(\dfrac{1}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{1}{xyz+yz+y}\)
\(=\dfrac{xyz}{xy+x+xyz}+\dfrac{y}{yz+y+1}+\dfrac{1}{yz+y+1}\)
\(=\dfrac{xyz}{x\left(y+1+yz\right)}+\dfrac{y}{yz+y+1}+\dfrac{1}{yz+y+1}\)
\(=\dfrac{yz}{yz+y+1}+\dfrac{y}{yz+y+1}+\dfrac{1}{yz+y+1}\)
\(=\dfrac{yz+y+1}{yz+y+1}=1\left(đpcm\right)\)
Vậy...