\(\dfrac{1}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{1}{xyz+yz+y}\)
\(=\dfrac{xyz}{xy+x+xyz}+\dfrac{y}{yz+y+1}+\dfrac{1}{yz+y+1}\)
\(=\dfrac{xyz}{x\left(y+1+yz\right)}+\dfrac{y}{yz+y+1}+\dfrac{1}{yz+y+1}\)
\(=\dfrac{yz}{yz+y+1}+\dfrac{y}{yz+y+1}+\dfrac{1}{yz+y+1}\)
\(=\dfrac{yz+y+1}{yz+y+1}=1\left(đpcm\right)\)
Vậy...