Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thu Uyên Lê
Xem chi tiết
dương thanh vân
Xem chi tiết
minhduc
13 tháng 8 2018 lúc 20:09

    x4 - 3x2 +1

= x4 - 2x2 + 1 - x2

= ( x2 - 1 )2 - x2

= ( x2- 1 +x ) ( x2 - 1 - x ) 

dương thanh vân
13 tháng 8 2018 lúc 20:30

umk, mình biết rồi. Tại đọc nhầm đề ấy mà

tranthuylinh
Xem chi tiết
Minh Anh
Xem chi tiết
tranthuylinh
Xem chi tiết
Lê Thị Thục Hiền
10 tháng 6 2021 lúc 12:18

Bài 1.2

\(A=\dfrac{2\sqrt{x}+7}{\sqrt{x}+2}=2+\dfrac{3}{\sqrt{x}+2}\)

C1:Bạn dùng pp chặn như bài 2.2

C2: (Gợi ý)\(\sqrt{x}+2\ge2\) và \(\sqrt{x}+2\inƯ\left(3\right)\)\(\Rightarrow\sqrt{x}+2=3\Leftrightarrow x=1\)

Vậy x=1 thì A nguyên

Bài 2.2

\(A=\dfrac{\sqrt{x}+7}{\sqrt{x}+2}=1+\dfrac{5}{\sqrt{x}+2}\)

Do \(\sqrt{x}\ge0;\forall x\)\(\Rightarrow\sqrt{x}+2\ge2\) \(\Rightarrow\dfrac{5}{\sqrt{x}+2}\le\dfrac{5}{2}\)\(\Rightarrow A\le\dfrac{7}{2}\) (1)

mà \(\dfrac{5}{\sqrt{x}+2}>0;\forall x\Rightarrow A>1\) (2)

Từ (1) (2) \(\Rightarrow1< A\le\dfrac{7}{2}\) mà A nguyên

\(\Rightarrow\left[{}\begin{matrix}A=2\\A=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}1+\dfrac{5}{\sqrt{x}+2}=2\\1+\dfrac{5}{\sqrt{x}+2}=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+2=5\\\sqrt{x}+2=\dfrac{5}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy...

Bài 3.2

\(A=\dfrac{-x-2\sqrt{x}-5}{\sqrt{x}+2}\)\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+2\right)-5}{\sqrt{x}+2}=-\sqrt{x}-\dfrac{5}{\sqrt{x}+2}\)

\(=2-\left(\sqrt{x}+2+\dfrac{5}{\sqrt{x}+2}\right)\)

Áp dụng bđt cosi: \(\sqrt{x}+2+\dfrac{5}{\sqrt{x}+2}\ge2\sqrt{\left(\sqrt{x}+2\right).\dfrac{5}{\sqrt{x}+2}}=2\sqrt{5}\)

\(\Rightarrow A\le2-2\sqrt{5}\)

Dấu = xảy ra \(\Leftrightarrow\sqrt{x}+2=\dfrac{5}{\sqrt{x}+2}\Leftrightarrow x=9-4\sqrt{5}\)

tranthuylinh
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
20 tháng 6 2021 lúc 12:19

A = \(\dfrac{4\sqrt{x}+9}{2\sqrt{x}+1}\)

Mà \(4\sqrt{x}+9>0\)

\(2\sqrt{x}+1>0\)

=> A > 0

A = \(\dfrac{2\left(2\sqrt{x}+1\right)+7}{2\sqrt{x}+1}\) = \(2+\dfrac{7}{2\sqrt{x}+1}\)

Mà \(2\sqrt{x}+1\ge1< =>\dfrac{7}{2\sqrt{x}+1}\le7\)

<=> \(A\le9\)

<=> 0 < A \(\le9\)

Mà A thuộc Z

<=> A \(\in\){1;2;3;4;5;6;7;8;9}

Đến đây bn thay A vào để tìm x nhé

๖ۣۜDũ๖ۣۜN๖ۣۜG
20 tháng 6 2021 lúc 14:34

A = \(\dfrac{2\left(2\sqrt{x}+1\right)+7}{2\sqrt{x}+1}=2+\dfrac{7}{2\sqrt{x}+1}\)

Mà \(2\sqrt{x}+1>0< =>\dfrac{7}{2\sqrt{x}+1}>0\)

<=> A > 2

Có \(2\sqrt{x}+1\ge1< =>\dfrac{7}{2\sqrt{x}+1}\le7\)

<=> \(A\le9\)

<=> 2 < A \(\le9\)

Mà A thuộc Z

<=> \(A\in\left\{3;4;5;6;7;8;9\right\}\)

Đến đây bn thay A vào để tìm x nhé

tranthuylinh
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
23 tháng 6 2021 lúc 11:02

A = \(\dfrac{6\sqrt{x}+8}{3\sqrt{x}+2}=2+\dfrac{4}{3\sqrt{x}+2}\)

Có \(3\sqrt{x}+2>0< =>\dfrac{4}{3\sqrt{x}+2}>0\) <=> A > 2

Có: \(3\sqrt{x}+2\ge2< =>\dfrac{4}{3\sqrt{x}+2}\le2\) <=> A \(\le4\)

<=> 2 < A \(\le4\)

Mà A nguyên

<=> \(\left[{}\begin{matrix}A=3\\A=4\end{matrix}\right.\)

TH1: A = 3

<=> \(\dfrac{4}{3\sqrt{x}+2}=1\)

<=> \(3\sqrt{x}+2=4< =>x=\dfrac{4}{9}\)

TH2: A = 4

<=> \(\dfrac{4}{3\sqrt{x}+2}=2< =>3\sqrt{x}+2=2< =>x=0\)

you know
Xem chi tiết
you know
20 tháng 7 2018 lúc 10:34

a=\(\sqrt{X^2+6+X}\)

pt\(\Leftrightarrow\)a2+6x-6=(2x+1)a

.....

(a-3)(a+2-2x)=0

...

giải 2 theo 2 trường hợp

♥♥♥

dương thanh vân
Xem chi tiết
Vương Thiên Nhi
13 tháng 8 2018 lúc 20:44

\(x^4-3x^2+1\)

\(=\left(x^4-2x^2+1\right)-x^2\)

\(=\left(x^2-1\right)^2-x^2=\left(x^2-1-x\right)\left(x^2-1+x\right)\)

Trà My My
7 tháng 10 2018 lúc 19:52

x4 - 3x2 +1

= (x2)2 - 3x2 + x2 + 1

= (x2 + 1)2 + x2

= (x2 + 1 + x). (x2 + 1 - x)

HuynhAnhThu 96-37 Nguyen
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 3 2020 lúc 22:40

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\frac{1}{x}=u\\\frac{1}{y}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{3}{5}u+v=10\\\frac{3}{4}u+\frac{3}{4}v=12\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3u+5v=50\\3u+3v=48\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}v=1\\u=15\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}=15\\\frac{1}{y}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{15}\\y=1\end{matrix}\right.\)

Khách vãng lai đã xóa