Giải pt: 0.3y4 + 1.8y2 + 1.5 = 0
0.5x-0.75y=-1.5
-x+1.5y=3 giải hệ pt
nhân pt1 với 2 rôi ap dung pp cộng đạo số
Bài 1: Cho pt x2 + 13x -1 = 0 (1). Không giải pt, hãy lập một pt bậc hai có các nghiệm y1, y2 lớn hơn nghiệm của pt (1) là 2.
Bài 2: Cho pt x2 - 5x + 6 = 0 (1). Không giải pt, hãy lập pt bậc hai có các nghiệm y1 và y2 là:
a/ Số đối các nghiệm của pt (1).
b/ Nghịch đảo các nghiệm của pt (1).
2:
a: y1+y2=-(x1+x2)=-5
y1*y2=(-x1)(-x2)=x1x2=6
Phương trình cần tìm có dạng là;
x^2+5x+6=0
b: y1+y2=1/x1+1/x2=(x1+x2)/x1x2=5/6
y1*y2=1/x1*1/x2=1/x1x2=1/6
Phương trình cần tìm là:
a^2-5/6a+1/6=0
giải pt: x^5 + 2x^4 +3x^3 + 3x^2 + 2x +1=0
giải pt: x^4 + 3x^3 - 2x^2 +x - 3=0
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
Giải pt ( đưa về pt bậc 2 )
cos23x - 5sin3x + 5 = 0
\(1-sin^23x-5sin3x+5=0\)
\(\Leftrightarrow-sin^23x-5sin3x+6=0\)
\(\Rightarrow\left[{}\begin{matrix}sin3x=1\\sin3x=-6< -1\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow3x=\dfrac{\pi}{2}+k2\pi\)
\(\Rightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\)
Giải pt ( đưa về pt bậc 2 )
cos22x + 3sin2x - 3 = 0
\(\Leftrightarrow1-sin^22x+3sin2x-3=0\)
\(\Leftrightarrow-sin^22x+3sinx-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=2>1\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow2x=\dfrac{\pi}{2}+k2\pi\)
\(\Rightarrow x=\dfrac{\pi}{4}+k\pi\)
Giải pt ( đưa về pt bậc 2 )
cos22x - 6sinx.cosx - 3 = 0
\(\Leftrightarrow1-sin^22x-3sin2x-3=0\)
\(\Leftrightarrow sin^22x+3sin2x+2=0\)
\(\Rightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=-2< -1\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow2x=-\dfrac{\pi}{2}+k2\pi\)
\(\Rightarrow x=-\dfrac{\pi}{4}+k\pi\)
Cho pt bậc 2 ẩn x: x2 + 3x + m = 0. a) Giải pt (1) khi m = 0; m = -4. b) Tìm m để pt (1) vô nghiệm. c) Tìm m để pt (1) có một nghiệm là -1. Tìm nghiệm kia. d) Cho x1, x2 là 2 nghiệm của pt (1). Không giải pt, hãy tìm giá trị của m để: 1/ x1^2 + x2^2=34 2/ x1 - x2=6 3/ x1=2x2 4/ 3x1+2x2=20 5/ x1^2-x2^2=30.
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
Cho pt X^2+2(m-1)x+m^2=0
1) Giải pt khi m=4
2) Giải pt khi m=-4
`x^2 + 2(m-1)x + m^2 = 0`
Thay `m=0` vào pt và giải ta được :
`x^2 - 6x + 16 = 0`
Vì `x^2 - 6x + 16 > 0` với mọi `x`
`=>` vô nghiệm
Vậy `S = RR`
Thay `m=-4` vào pt và giải ta được :
`x^2 + 10x + 16 = 0`
`\Delta = 10^2 - 4*1*16 = 36 > 0`
`=> \sqrt{\Delta} = 6`
`=>` Phương trình có 2 nghiệm phân biệt :
`x_1 = (-10+6)/(2*1) = -2`
`x_2 = (-10-6)/(2*1) = -8`
Vậy `S = {-2,-8}`
Cho pt bậc 2 x^2+5x+3m=0 (m là tham số) A) thay m=0 rồi giải pt đã cho B) tìm m để pt x^2+5x+3m=0 có 2 nghiệm phân biệt
a) Với m=0
=> pt <=> \(x^2+5x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
b) \(x^2+5x+3m=0\)
\(\Delta=25-12m\)
Để phương trình có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow25-12m>0\)
\(\Leftrightarrow m< \dfrac{25}{12}\)